[1] CHANG C. C.: 
Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467-490. 
MR 0094302 | 
Zbl 0084.00704 
[2] CIGNOLI R.-D'OTTAVIANO I. M. L.-MUNDICI D.: 
Algebraic Foundations of Many-Valued Reasoning. Trends in Logic - Studia Logica Library Vol. 7, Kluwer Acadеmic Publishеrs, Dordrеcht, 2000. 
MR 1786097 | 
Zbl 0937.06009 
[3] CONRAD P.: 
Lattice Ordered Groups. Math. Rеs. Library IV, Tulanе Univеrsity, Nеw Orlеans, 1970. 
Zbl 0258.06011 
[4] DARNEL M. R.: 
Theory of Lattice-Ordered Groups. M. Dеkkеr, Nеw York-Basel-Hong Kong, 1995. 
MR 1304052 | 
Zbl 0810.06016 
[5] DVUREČENSKIJ A.-PULМANNOVÁ S.: 
New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht, 2000. 
Zbl 0987.81005 
[6] GLUSCHANKOV D.: 
Cyclic ordered groups and $MV$-algebras. Czechoslovak Math. J. 43 (1993), 249-263. 
MR 1211747 
[7] JAKUBÍK J.: 
Cantor-Bernstein theorem for lattice ordered groups. Czechoslovak Math. J. 22 (1972), 159-175. 
MR 0297666 | 
Zbl 0243.06009 
[8] JAKUBÍK J.: 
Sequential convergences on $MV$-algebras. Czechoslovak Math. J. 45 (1995), 709-726. 
MR 1354928 | 
Zbl 0845.06009 
[9] JAKUBÍK J.: 
On complete lattice ordered groups with strong units. Czechoslovak Math. J. 46 (1996), 221-230. 
MR 1388611 | 
Zbl 0870.06014 
[11] JAKUBÍK J.: 
Complete generators and maximal completions of  $MV$-algebras. Czechoslovak Math. J. 48 (1998), 597-608. 
MR 1637863 | 
Zbl 0951.06010 
[12] JAKUBÍK J.: 
Cantor-Bernstein theorem for $MV$-algebras. Czechoslovak Math. J. 49 (1999), 517-526. 
MR 1708370 | 
Zbl 1004.06011 
[13] JAKUBIK J.: 
Convex isomorphisms of archimedean lattice ordered groups. Mathware Soft Comput. 5 (1998), 49-56. 
MR 1632739 | 
Zbl 0942.06008 
[14] MUNDICI D.: 
Interpretation of $AFC^\ast$ -algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15-63. 
MR 0819173 
[15] SCHMIDT J.: 
Zur Kennzeichnung der Dedekind - Mac Neilleschen Hülle einer geordneten Menge. Arch. Math. (Basel) 7 (1956), 241-249. 
MR 0084484 
[16] SIKORSKI R.: 
A generalization of theorem of Banach and Cantor-Bernstein. Colloq. Math. 1 (1948), 140-144. 
MR 0027264 
[18] SIMONE A. DE-MUNDICI D.-NAVARA M.: A Cantor-Bernstein theorem for a complete $MV$-algebras. Preprint.