[1] Arratia R., Barbour A.D., Tavaré S.: 
Logarithmic Combinatorial Structures: a Probabilistic Approach.  EMS Monographs in Mathematics, EMS Publishing House, Zürich, 2003. 
MR 2032426[2] Arratia R., Tavaré S.: 
Limit theorems for combinatorial structures via discrete process approximations.  Random Structures and Algorithms 3(1992), 3, 321–345. 
DOI 10.1002/rsa.3240030310 | 
MR 1164844[3] Babu G.J., Manstavičius E.: 
Processes with independent increments for the Ewens sampling formula.  Ann. Inst. Stat. Math. 54(2002), 3, 607–620. 
DOI 10.1023/A:1022419328971 | 
MR 1932405[4] Elliott P. D. T. A.: 
Probabilistic Number Theory.  I, II. Springer, New York–Heidelberg–Berlin, 1979/80. 
MR 0551361 | 
Zbl 0431.10029[5] Goncharov V.L.: On the distribution of cycles in permutations.  Dokl. Acad. Nauk SSSR 35(1942), 299–301.
[7] Kubilius J.: 
Probabilistic Methods in the Theory of Numbers.  Amer. Math. Soc. Translations 11, Providence, RI, 1964. 
MR 0160745 | 
Zbl 0133.30203[10] Manstavičius E.: 
Functional limit theorem for sequences of mappings on the symmetric group.  In: Anal. Probab. Methods in Number Theory, A. Dubickas et al (Eds), TEV, Vilnius, 2002, 175–187. 
MR 1964861[12] Manstavičius E.: Asymptotic value distribution of additive functions defined on the symmetric group.  (submitted, 2005, 23 p.).
[13] Šiaulys J.: 
Factorial moments for distributions of additive functions.  Lith. Math. J. 40(2000), 4, 389–408. 
DOI 10.1023/A:1007617714857