[2] Brillhart J., Lehmer D. H., Selfridge L., Tuckerman B., Wagstaff S. S., Jr.: Factorizations of $b^n\pm 1$, $b=2,3,5,6,7,10,11,12$ up to high powers.  Contemporary Mathematics, Vol. 22, American Mathematical Society, Providence 1983.
[3] Cipolla M.: 
Sui numeri composti $P$, che verificano la congruenza di Fermat $\alpha ^{P-1}\equiv 1(\mathop {\rm mod}\,P)$.  Annali di Matematica (3) 9 (1904), 139–160. 
DOI 10.1007/BF02419871[4] Dickson L. E.: History of the Theory of Numbers.  vol. I, New York 1952.
[5] Duparc H. J. A.: Enige generalizaties van de getallen Van Poulet en Carmichael.  Math. Centrum Amsterdam, Rapport Z. W. 1956-005.
[7] Granville A. J.: The prime $k$-tuplets conjecture implies that there are arbitrarity long arithmetic progressions of Carmichael numbers.  (written communication of December 1995).
[8] Halberstam H., Rotkiewicz A.: 
A gap theorem for pseudoprimes in arithmetic progression.  Acta Arith. 13 (1967/68), 395–404. 
MR 0225736[9] Jeans J. A.: The converse of Fermat’s theorem.  Messenger of Mathematics 27 (1898), p. 174.
[10] Keller W.: 
Factors of Fermat numbers and large primes of the form $k\cdot 2^n+1$.  Math. Comp., 41 (1983), 661–673. 
MR 0717710[13] Knopfmacher J., Porubsky: 
Topologies Related to Arithmetical Properties of Integral Domains.  Expo. Math. 15 (1997), 131–148. 
MR 1458761 | 
Zbl 0883.11043[14] Korselt A.: Problème chinois.  L’Interm. des Math. 6 (1899), 142-143.
[15] Kraïtchik M.: Théorie des Nombres.  Gauthier – Villars, Paris 1922.
[16] Kraïtchik M.: On the factorization of $2^n\pm 1$.  Scripta Math. 18 (1952), 39–52.
[17] Křižek M., Luca F., Somer L.: 
17 Lectures on Fermat Numbers.  From Number Theory to Geometry, Canadian Mathematical Society, Springer 2001. 
MR 1866957[18] Lucas E.: Sur la série récurrent de Fermat.  Bolletino di Bibliografia e di Storia della Scienze Matematiche e Fisiche 11 (1878), 783–798.
[19] Lucas E.: Théorèmes d’arithmetique.  Atti della Reale Accademia delle scienze di Torino 13 (1878), 271–284.
[20] Malo E.: Nombres qui, sans être premiers, vérifient exceptionellement une congruence de Fermat, L’Interm.  des Math. 10 (1903), 8.
[21] Mahnke D.: Leibniz and der Suche nach einer allgemeinem Primzahlgleichung.  Bibliotheca Math. Vol. 13 (1913), 29–61.
[22] Needham J.: 
Science and Civilization in China, vol. 3: Mathematics and Sciences of the Heavens and the Earth.  Cambridge 1959, p. 54, footnote A. 
MR 0139507[23] Pinch Richard G. E.: 
The pseudoprimes up to $10^{13}$.  Algorithmic Number Theory, 4th International Symposium, Proceedings ANTS-IV Leiden, The Netherlands, July 2000, Springer 2000, 456–473. 
MR 1850626[24] Pomerance C.: 
A new lower bound for the pseudoprimes counting function.  Illinois J. Math. 26 (1982), 4–9. 
MR 0638549[25] Pomerance C., Selfridge J. L., Wagstaff S. S.: 
The pseudoprimes to $25\cdot 10^9$.  Math. Comp. 35 (1980), 1009–1026. 
MR 0572872[27] Riesel H.: 
Prime Numbers and Computer Methods for Factorization.  Birkhäuser, Boston-Basel-Berlin, 1994. 
MR 1292250 | 
Zbl 0821.11001[29] Rotkiewicz A.: 
Sur les nombres pseudopremiers de la forme $ax+b$.  C.R. Acad. Sci. Paris 257 (1963), 2601–2604. 
MR 0162757 | 
Zbl 0116.03501[30] Rotkiewicz A., Sierpiński W.: 
Sur l’équation diophantienne $2^x-xy=2$.  Publ. Inst. Math. (Beograd) (N.S.) 4 (18) (1964), 135–137. 
MR 0171745[31] Rotkiewicz A., Schinzel A.: 
Sur les nombres pseudopremiers de la forme $ax^2+bxy+cy^2$.  ibidem 258 (1964), 3617–3620. 
MR 0161828[32] Rotkiewicz A.: 
Sur les formules donnant des nombres pseudopremiers.  Colloq. Math. 12 (1964), 69–72. 
MR 0166138 | 
Zbl 0129.02703[33] Rotkiewicz A.: 
Pseudoprime Numbers and Their Generalizations.  Stud. Assoc. Fac. Sci. Univ. Novi Sad, 1972, pp. i+169. 
MR 0330034 | 
Zbl 0324.10007[36] Sarrus F.: 
Démonstration de la fausseté du théorème énoncé à la page 320 du $IX^e$ volume de ce recueil.  Annales de Math. Pure Appl. 10 (1819–20), 184–187. 
MR 1556023[37] Schinzel A.: 
On primitive prime factors of $a^n-b^n$.  Proc. Cambridge Philos. Soc. 58(1962), 555-562. 
MR 0143728[38] Sierpiński W.: 
Remarque sur une hypothèse des Chinois concernant les nombres $(2^n-2)/n$.  Colloq. Math. 1 (1948), 9. 
MR 0023256[39] Sierpiński W.: 
A selection of Problems in the Theory of Numbers.  Pergamon Press. New York, 1964. 
MR 0170843[40] Sierpiński W.: 
Elementary Theory of numbers.  $2^{\rm nd}$ Engl. ed. revised and enlargend by A. Schinzel, Państwowe Wydawnictwo Naukowe, Warszawa, 1988. 
MR 0930670[41] Steuerwald R.: 
Über die Kongruenz $2^{n-1}\equiv 1(\mathop {\rm mod}\,n)$.  S.-B. Math.-Nat. Kl., Bayer. Akad. Win., 1947, 177. 
MR 0030541[44] Williams Hugh C.: 
Edouard Lucas and Primality Testing.  Canadian Mathematical Society Series of Monographs and Advanced Texts, vol. 22 A Wiley - Interscience Publication, New York-Chichester-Weinheim-Brisbane-Singapore-Toronto 1998. 
MR 1632793 | 
Zbl 1155.11363