| Title:
             | 
Pure filters and stable topology on BL-algebras (English) | 
| Author:
             | 
Eslami, Esfandiar | 
| Author:
             | 
Haghani, Farhad Kh. | 
| Language:
             | 
English | 
| Journal:
             | 
Kybernetika | 
| ISSN:
             | 
0023-5954 | 
| Volume:
             | 
45 | 
| Issue:
             | 
3 | 
| Year:
             | 
2009 | 
| Pages:
             | 
491-506 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
In this paper we introduce stable topology and $F$-topology on the set of all prime filters of a BL-algebra $A$ and show that the set of all prime filters of $A$, namely Spec($A$) with the stable topology is a compact space but not $T_0$. Then by means of stable topology, we define and study pure filters of a BL-algebra $A$ and obtain a one to one correspondence between pure filters of $A$ and closed subsets of Max($A$), the set of all maximal filters of $A$, as a subspace of Spec($A$). We also show that for any filter $F$ of BL-algebra $A$ if $\sigma(F)=F$ then $U(F)$ is stable and $F$ is a pure filter of $A$, where $\sigma(F)=\{a\in A|\,y\wedge z=0$ for some $z\in F$ and $y\in a^\perp\}$ and $U(F)=\{P\in $ Spec($A$)\,$\vert\,F\nsubseteq P\}$. (English) | 
| Keyword:
             | 
BL-algebra | 
| Keyword:
             | 
prime filters | 
| Keyword:
             | 
maximal filters | 
| Keyword:
             | 
pure filters | 
| Keyword:
             | 
stable topology | 
| Keyword:
             | 
F-topology | 
| MSC:
             | 
03G25 | 
| MSC:
             | 
06F35 | 
| MSC:
             | 
06F99 | 
| MSC:
             | 
08A72 | 
| idZBL:
             | 
Zbl 1177.03069 | 
| idMR:
             | 
MR2543136 | 
| . | 
| Date available:
             | 
2010-06-02T18:45:39Z | 
| Last updated:
             | 
2012-06-06 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/140014 | 
| . | 
| Reference:
             | 
[1] L. P. Belluce, A. Di Nola, and S. Sessa: The prime spectrum of an MV-algebra.Math. Logic Quart. 40 (1994), 331–346. MR 1283500 | 
| Reference:
             | 
[2] L. P. Belluce and S. Sessa: The stable topology for MV-algebras.Quaestiones Math. 23 (2000), 3, 269–277. MR 1809936 | 
| Reference:
             | 
[3] D. Busneage and D. Piciu: On the lattice of deductive system of a BL-algebra.Central European Journal of Mathematics 2 (2003), 221–237. MR 1993450 | 
| Reference:
             | 
[4] A. Di Nola, G. Geurgescu, and A. Iorgulescu: Pseudo-BL-algebra, Part II.Multiple Valued Logic 8 (2002), 717–750. MR 1948854 | 
| Reference:
             | 
[5] G. Georgescu and L. Leustean: Semilocal and maximal BL-algebras.Preprint. | 
| Reference:
             | 
[6] P. Hájek: Metamathematics of Fuzzy Logic, Trends in Logic.(Studia Logica Library 4.) Kluwer Academic Publishers, Dordrecht 1998. MR 1900263 | 
| Reference:
             | 
[7] P. T. Johnstone: Stone Spaces.(Cambridge Studies in Advanced Mathematics.) Cambridge University Press, Cambridge 1982. Zbl 0586.54001, MR 0698074 | 
| Reference:
             | 
[8] L. Leustean: The prime and maximal spectra and the reticulation of BL-algebras.Central European Journal of Mathematics 1 (2003), 382–397. Zbl 1039.03052, MR 1992899 | 
| Reference:
             | 
[9] L. Leustean: Representations of Many-Valued Algebras.PhD. Thesis, University of Bucharest 2004. | 
| Reference:
             | 
[10] E. Turunen: Mathematics Behind Fuzzy Logic.Advances in Soft Computing. Physica-Verlag, Heidelberg 1999. Zbl 0940.03029, MR 1716958 | 
| Reference:
             | 
[11] E. Turunen and S. Sessa: Local BL-algebras.Multi-Valued Log. 6 (2001), 1–2, 229–249. MR 1817445 | 
| . |