| Title:
             | 
A quasistatic bilateral contact problem with adhesion and friction for viscoelastic materials (English) | 
| Author:
             | 
Touzaline, Arezki | 
| Language:
             | 
English | 
| Journal:
             | 
Commentationes Mathematicae Universitatis Carolinae | 
| ISSN:
             | 
0010-2628 (print) | 
| ISSN:
             | 
1213-7243 (online) | 
| Volume:
             | 
51 | 
| Issue:
             | 
1 | 
| Year:
             | 
2010 | 
| Pages:
             | 
85-97 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We consider a mathematical model which describes a contact problem between a deformable body and a foundation. The contact is bilateral and is modelled with Tresca's friction law in which adhesion is taken into account. The evolution of the bonding field is described by a first order differential equation and the material's behavior is modelled with a nonlinear viscoelastic constitutive law. We derive a variational formulation of the mechanical problem and prove the existence and uniqueness result of the weak solution. The proof is based on arguments of time-dependent variational inequalities, differential equations and Banach fixed point theorem. (English) | 
| Keyword:
             | 
viscoelastic materials | 
| Keyword:
             | 
adhesion | 
| Keyword:
             | 
Tresca's friction | 
| Keyword:
             | 
fixed point | 
| Keyword:
             | 
weak solution | 
| MSC:
             | 
47J20 | 
| MSC:
             | 
49J40 | 
| MSC:
             | 
74M10 | 
| MSC:
             | 
74M15 | 
| idZBL:
             | 
Zbl 1224.74089 | 
| idMR:
             | 
MR2666082 | 
| . | 
| Date available:
             | 
2010-05-21T12:35:36Z | 
| Last updated:
             | 
2013-09-22 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/140088 | 
| . | 
| Reference:
             | 
[1] Awbi B., Chau O., Sofonea A.: Variational analysis of a frictional contact problem for viscoelastic bodies.Int. Math. J. 1 (2002), no. 4, 333–348. Zbl 1002.74074, MR 1846749 | 
| Reference:
             | 
[2] Brezis H.: Equations et inéquations non linéaires dans les espaces vectoriels en dualité.Annales Inst. Fourier 18 (1968), 115–175. Zbl 0169.18602, MR 0270222, 10.5802/aif.280 | 
| Reference:
             | 
[3] Cangémi L.: Frottement et adhérence: modèle, traitement numérique et application à l'interface fibre/matrice.Ph.D. Thesis, Univ. Méditerranée, Aix Marseille I, 1997. | 
| Reference:
             | 
[4] Chau O., Fernandez J.R., Shillor M., Sofonea M.: Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion.J. Computational and Applied Mathematics 159 (2003), 431–465. Zbl 1075.74061, MR 2005970, 10.1016/S0377-0427(03)00547-8 | 
| Reference:
             | 
[5] Chau O., Shillor M., Sofonea M.: Dynamic frictionless contact with adhesion.Z. Angew. Math. Phys. 55 (2004), 32–47. Zbl 1064.74132, MR 2033859, 10.1007/s00033-003-1089-9 | 
| Reference:
             | 
[6] Cocu M., Rocca R.: Existence results for unilateral quasistatic contact problems with friction and adhesion.Math. Model. Numer. Anal. 34 (2000), 981–1001. Zbl 0984.74054, MR 1837764, 10.1051/m2an:2000112 | 
| Reference:
             | 
[7] Duvaut G., Lions J.-L.: Les inéquations en mécanique et en physique.Dunod, Paris, 1972. Zbl 0298.73001, MR 0464857 | 
| Reference:
             | 
[8] Fernandez J.R., Shillor M., Sofonea M.: Analysis and numerical simulations of a dynamic contact problem with adhesion.Math. Comput. Modelling 37 (2003) 1317–1333. MR 1996040, 10.1016/S0895-7177(03)90043-4 | 
| Reference:
             | 
[9] Frémond M.: Adhérence des solides.J. Méc. Théor. Appl. 6 (1987), 383–407. | 
| Reference:
             | 
[10] Frémond M.: Equilibre des structures qui adhèrent à leur support.C.R. Acad. Sci. Paris Sér. II 295, (1982), 913–916. MR 0695554 | 
| Reference:
             | 
[11] Frémond M.: Non-smooth Thermomechanics.Springer, Berlin, 2002. MR 1885252 | 
| Reference:
             | 
[12] Nassar S.A., Andrews T., Kruk S., Shillor M.: Modelling and simulations of a bonded rod.Math. Comput. Modelling 42 (2005), 553–572. Zbl 1121.74428, MR 2173474, 10.1016/j.mcm.2004.07.018 | 
| Reference:
             | 
[13] Raous M., Cangémi L., Cocu M.: A consistent model coupling adhesion, friction, and unilateral contact.Comput. Methods Appl. Mech. Engrg. 177 (1999), 383–399. MR 1710458, 10.1016/S0045-7825(98)00389-2 | 
| Reference:
             | 
[14] Rojek J., Telega J.J.: Contact problems with friction, adhesion and wear in orthopeadic biomechanics. I: General developements.J. Theor. Appl. Mech. 39 (2001), 655–677. | 
| Reference:
             | 
[15] Shillor M., Sofonea M., Telega J.J.: Models and Variational Analysis of Quasistatic Contact.Lecture Notes in Physics, 655, Springer, Berlin, 2004. 10.1007/b99799 | 
| Reference:
             | 
[16] Sofonea M., Han W., Shillor M.: Analysis and Approximations of Contact Problems with Adhesion or Damage.Pure and Applied Mathematics, 276, Chapman & Hall / CRC Press, Boca Raton, Florida, 2006. MR 2183435 | 
| Reference:
             | 
[17] Sofonea M., Hoarau-Mantel T.V.: Elastic frictionless contact problems with adhesion.Adv. Math. Sci. Appl. 15 (2005), no. 1, 49–68. Zbl 1085.74036, MR 2148278 | 
| Reference:
             | 
[18] Sofonea M., Arhab R., Tarraf R.: Analysis of electroelastic frictionless contact problems with adhesion.J. Appl. Math. 2006, ID 64217, pp.1–25. Zbl 1143.74042, MR 2251808 | 
| . |