[1] Abbasova, M. M., Bandaliev, R. A.: 
On the boundedness of Hardy operator in the weighted variable exponent spaces. Proc. of Nat. Acad. of Sci. of Azerbaijan. Embedding theorems. Harmonic Analysis. 13 (2007), 5-17. 
MR 2719561[3] Bandaliev, R. A.: 
On an inequality in Lebesgue space with mixed norm and with variable summability exponent. Mat. Zametki 84 (2008), 323-333 Russian. 
MR 2473750 | 
Zbl 1171.46023[5] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: 
The maximal function on variable $L^p$ spaces. Ann. Acad. Sci. Fenn. Math. 28 (2003), 223-238. 
MR 1976842[6] Diening, L.: 
Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$. Math. Inequal. Appl. 7 (2004), 245-253. 
MR 2057643[7] Diening, L., Samko, S.: 
Hardy inequality in variable exponent Lebesgue spaces. Frac. Calc. and Appl. Anal. 10 (2007), 1-18. 
MR 2348863 | 
Zbl 1132.26341[9] Edmunds, D. E., Kokilashvili, V., Meskhi, A.: 
On the boundedness and compactness of weighted Hardy operators in spaces $\smash{L^{p(x)}}$. Georgian Math. J. 12 (2005), 27-44. 
MR 2136721[10] Edmunds, D. E., Kokilashvili, V., Meskhi, A.: 
Bounded and compact integral operators. Math. and Its Applications. 543, Kluwer Acad.Publish., Dordrecht (2002). 
MR 1920969 | 
Zbl 1023.42001[11] Edmunds, D. E., Kokilashvili, V., Meskhi, A.: 
Two-weight estimates in $L^{p(x)}$ spaces for classical integral operators and applications to the norm summability of Fourier trigonometric series. Proc. A. Razmadze Math. Inst. 142 (2006), 123-128. 
MR 2294574[12] Gadjiev, A. D., Aliev, I. A.: 
Weighted estimates for multidimensional singular integrals generated by a generalized shift operator. Mat. Sbornik 183 (1992), 45-66 Russian. 
MR 1198834[13] Guliev, V. S.: 
Two-weight inequalities for integral operators in $L_p$-spaces and their applications. Trudy Mat. Inst. Steklov. 204 (1993), 97-116. 
MR 1320021[14] Guliev, V. S.: Integral operators on function spaces defined on homogeneous groups and domains in $R^n.$ Doctor's dissertation. Mat. Inst. Steklov. (1994), 1-329.
[15] Harjulehto, P., Hästö, P., Koskenoja, M.: 
Hardy's inequality in a variable exponent Sobolev space. Georgian Math. J. 12 (2005), 431-442. 
MR 2174945 | 
Zbl 1096.46017[16] Kokilashvili, V., Meskhi, A.: 
Two-weight inequalities for singular integrals defined on homogeneous groups. Proc. A. Razmadze Math. Inst. 112 (1997), 57-90. 
MR 1468962 | 
Zbl 0983.43501[17] Kokilashvili, V., Samko, S. G.: 
Singular integrals in weighted Lebesgue space with variable exponent. Georgian Math. J. 10 (2003), 145-156. 
DOI 10.1515/GMJ.2003.145 | 
MR 1990694[18] Kokilashvili, V., Samko, S. G.: 
The maximal operator in weighted variable spaces on metric measure space. Proc. A. Razmadze Math. Inst. 144 (2007), 137-144. 
MR 2387413[20] Kováčik, O., Rákosník, J.: 
On spaces $L^{p(x)}$ and $W^{k, p(x)}$. Czech. Math. J. 41 (1991), 592-618. 
MR 1134951[21] Krbec, M., Opic, B., Pick, L., Rákosník, J.: 
Some recent results on Hardy type operators in weighted function spaces and related topics. Function spaces, differential operators and nonlinear analysis (Frie4ichroda, 1992). 158-184, Teubner-Texte Math., 133, Teubner, Stuttgart (1993). 
MR 1242582[23] Mashiyev, R. A., Çekiç, B., Mamedov, F. I., Ogras, S.: 
Hardy's inequality in power-type weighted $L^{p(\cdot)}(0, \infty)$ spaces. J. Math. Anal. Appl. 334 (2007), 289-298. 
DOI 10.1016/j.jmaa.2006.12.043 | 
MR 2332556[26] Musielak, J.: 
Orlicz Spaces and Modular Spaces. Lecture Notes in Math. 1034. Springer-Verlag, Berlin-Heidelberg-New York (1983). 
MR 0724434 | 
Zbl 0557.46020[29] Nekvinda, A.: 
Hardy-Littlewood maximal operator in $L^{p(x)}(R^n)$. Math. Ineq. Appl. 7 (2004), 255-265. 
MR 2057644[30] Opic, B., Kufner, A.: 
Hardy-Type Inequalities. Pitman Research Notes in Math. ser., 219. Longman sci. and tech., Harlow (1990). 
MR 1069756 | 
Zbl 0698.26007[32] Růžička, M.: 
Electrorheological Fluids: Modeling and Mathematical theory. Lecture Notes in Math. 1748. Springer-Verlag, Berlin (2000). 
MR 1810360[33] Samko, S. G.: 
Differentiation and integration of variable order and the spaces $L^{p(x)}$. Proc.Inter.Conf. "Operator theory for Complex and Hypercomplex analysis". 1994, 203-219. Contemp. Math., 212, AMS, Providence, RI, 1998. 
MR 1486602[35] Sharapudinov, I. I.: 
On a topology of the space $L^{p(t)}([0,1])$. Mat. Zametki 26 (1979), 613-637 Russian. 
MR 0552723[36] Sharapudinov, I. I.: 
The basis property of the Haar system in the space $L^{p(t)}([0,1])$ and the principle of localization in the mean. Mat. Sbornik 130 (1986), 275-283 Russian. 
MR 0854976[38] Zeren, Y., Guliyev, V. S.: 
Two-weight norm inequalities for some anisotropic sublinear operators. Turkish Math. J. 30 (2006), 329-350. 
MR 2248753 | 
Zbl 1179.42015[39] Zhikov, V. V.: 
Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk Russian 50 (1986), 675-710 Russian. 
MR 0864171 | 
Zbl 0599.49031