Article
Keywords:
abstract integration; extension of integral; Kurzweil-Henstock integration
Summary:
This work is a continuation of the paper (Š. Schwabik: General integration and extensions I, Czechoslovak Math.\ J. 60 (2010), 961--981). Two new general extensions are introduced and studied in the class $\frak T$ of general integrals. The new extensions lead to approximate description of the Kurzweil-Henstock integral based on the Lebesgue integral close to the results of S. Nakanishi presented in the paper (S. Nakanishi: A new definition of the Denjoy's special integral by the method of successive approximation, Math.\ Jap. 41 (1995), 217--230).
Related articles:
References:
                        
[3] Gordon, R. A.: 
The Integrals of Lebesgue, Denjoy, Perron and Henstock. American Mathematical Society Providence (1994). 
MR 1288751 | 
Zbl 0807.26004[5] Kurzweil, J.: 
Nichtabsolut konvergente Integrale. BSB B. G. Teubner Verlagsgesellschaft Leipzig (1980). 
MR 0597703 | 
Zbl 0441.28001[6] Lee, P.-Y.: 
Lanzhou Lectures on Henstock Integration. World Scientific Singapore (1989). 
MR 1050957 | 
Zbl 0699.26004[7] Lee, P.-Y., Výborný, R.: 
The Integral; An Easy Approach after Kurzweil and Henstock. Cambridge Univ. Press Cambridge (2000). 
MR 1756319[8] Nakanishi, S.: 
A new definition of the Denjoy's special integral by the method of successive approximation. Math. Jap. 41 (1995), 217-230. 
MR 1317766 | 
Zbl 0932.26007[9] Saks, S.: 
Theory of the Integral. Hafner New York (1937). 
Zbl 0017.30004