Previous |  Up |  Next


Bochner's Theorem; multiplier-nonnegative-definiteness; Wigner quasidensities; Pauli matrices
A quantum version of Bochner's theorem characterising Fourier transforms of probability measures on locally compact Abelian groups gives a characterisation of the Fourier transforms of Wigner quasi-joint distributions of position and momentum. An analogous quantum Bochner theorem characterises quasi-joint distributions of components of spin. In both cases quantum states in which a true distribution exists are characterised by the intersection of two convex sets. This may be described explicitly in the spin case as the intersection of the Bloch sphere with a regular tetrahedron whose edges touch the sphere.
[1] Bochner, S.: Lectures on Fourier Integrals. Princeton University Press 1959. MR 0107124 | Zbl 0085.31802
[2] Cushen, C. D.: Quasi-characteristic functions of canonical observcables in quantum mechanics. Nottingham PhD Thesis 1970.
[3] Holevo, A. S.: Veroiatnostnye i statistichneskie aspekty kvantovoi teorii. Nauka, Moscow 1980, English translation Probabilistic and statistical aspects of quantum theory, North Holland 1982. MR 0681693
[4] Hudson, R. L.: When is the Wigner quasi-probability density nonnegative? Rep. Math. Phys. 6 (1974), 249–252. DOI 10.1016/0034-4877(74)90007-X | MR 0384019
[5] Gikhman, I. I., Skorohod, A. V.: Introduction to the Theory of Random Processes. Philadelphia 1969. MR 0247660
[6] Neumann, J. von: Die Eindeutigkeit der Schrõdingerschen Operatoren. Math. Ann. 104 (1931), 570–578. DOI 10.1007/BF01457956 | MR 1512685
[7] Pool, J. C. T.: Mathematical aspects of the Weyl correspondence. J. Math. Phys. 7 (1966), 66–76. DOI 10.1063/1.1704817 | MR 0204049 | Zbl 0139.45903
[8] Rudin, W.: Fourier Analysis on Groups. Interscience New York 1962. MR 0152834 | Zbl 0107.09603
[9] Wigner, E.: On the quantum correction to thermodynamic equilibrium. Phys. Rev. 40 (1932), 749–759. DOI 10.1103/PhysRev.40.749
Partner of
EuDML logo