| Title:
|
$n$-flat and $n$-FP-injective modules (English) |
| Author:
|
Yang, Xiaoyan |
| Author:
|
Liu, Zhongkui |
| Language:
|
English |
| Journal:
|
Czechoslovak Mathematical Journal |
| ISSN:
|
0011-4642 (print) |
| ISSN:
|
1572-9141 (online) |
| Volume:
|
61 |
| Issue:
|
2 |
| Year:
|
2011 |
| Pages:
|
359-369 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
In this paper, we study the existence of the $n$-flat preenvelope and the $n$-FP-injective cover. We also characterize $n$-coherent rings in terms of the $n$-FP-injective and $n$-flat modules. (English) |
| Keyword:
|
$n$-flat module |
| Keyword:
|
$n$-FP-injective module |
| Keyword:
|
$n$-coherent ring |
| Keyword:
|
cotorsion theory |
| MSC:
|
13C11 |
| MSC:
|
13D07 |
| MSC:
|
16D40 |
| MSC:
|
16E10 |
| idZBL:
|
Zbl 1249.13011 |
| idMR:
|
MR2905409 |
| DOI:
|
10.1007/s10587-011-0080-4 |
| . |
| Date available:
|
2011-06-06T10:28:23Z |
| Last updated:
|
2020-07-03 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141539 |
| . |
| Reference:
|
[1] Aldrich, S. T., Enochs, E. E., Rozas, J. R. García, Oyonarte, L.: Covers and envelopes in Grothendieck categories: Flat covers of complexes with applications.J. Algebra 243 (2001), 615-630. MR 1850650, 10.1006/jabr.2001.8821 |
| Reference:
|
[2] Chase, S. U.: Direct products of modules.Trans. Am. Math. Soc. 97 (1961), 457-473. Zbl 0100.26602, MR 0120260, 10.1090/S0002-9947-1960-0120260-3 |
| Reference:
|
[3] Chen, J., Ding, N.: On $n$-coherent rings.Commun. Algebra 24 (1996), 3211-3216. Zbl 0877.16010, MR 1402554, 10.1080/00927879608825742 |
| Reference:
|
[4] Ding, N.: On envelopes with the unique mapping property.Commun. Algebra 24 (1996), 1459-1470. Zbl 0863.16005, MR 1380605, 10.1080/00927879608825646 |
| Reference:
|
[5] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra.de Gruyter Expositions in Mathematics, 30 Walter de Gruyter Berlin (2000). Zbl 0952.13001, MR 1753146 |
| Reference:
|
[6] Lee, S. B.: $n$-coherent rings.Commun. Algebra 30 (2002), 1119-1126. Zbl 1022.16001, MR 1892593, 10.1080/00927870209342374 |
| . |