| Title:
             | 
On regular endomorphism rings of topological Abelian groups (English) | 
| Author:
             | 
Abrudan, Horea Florian | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
61 | 
| Issue:
             | 
2 | 
| Year:
             | 
2011 | 
| Pages:
             | 
521-530 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We extend a result of Rangaswamy about regularity of endomorphism rings of Abelian groups to arbitrary topological Abelian groups. Regularity of discrete quasi-injective modules over compact rings modulo radical is proved. A characterization of torsion LCA groups $A$ for which ${\rm End}_c(A)$ is regular is given. (English) | 
| Keyword:
             | 
$m$-regular ring | 
| Keyword:
             | 
discrete module | 
| Keyword:
             | 
quasi-injective module | 
| Keyword:
             | 
linearly compact group | 
| Keyword:
             | 
LCA group | 
| Keyword:
             | 
local product | 
| MSC:
             | 
16E50 | 
| MSC:
             | 
16S50 | 
| MSC:
             | 
16W80 | 
| MSC:
             | 
20K30 | 
| MSC:
             | 
20K45 | 
| MSC:
             | 
22B05 | 
| idZBL:
             | 
Zbl 1240.20055 | 
| idMR:
             | 
MR2905420 | 
| DOI:
             | 
10.1007/s10587-011-0070-6 | 
| . | 
| Date available:
             | 
2011-06-06T10:39:12Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/141550 | 
| . | 
| Reference:
             | 
[1] Abrudan, H. F., Ursul, M.: Boundedness of topological endomorphism rings of torsion Abelian groups.Contr. to Gen. Algebra 17 (2006), 1-8. Zbl 1119.20049, MR 2237800 | 
| Reference:
             | 
[2] Bourbaki, N.: Obshchaya topologia. Topologicheskie gruppy. Chisla i svyazannye s nimi gruppy i prostranstva.Izdatel'stvo ``Nauka'', Moscow, 1969 (In Russian). French original: Elements de Mathematique. Topologie Generale. Ch. III--VIII, Hermann. MR 0256328 | 
| Reference:
             | 
[3] Faith, C.: Algebra II---Ring Theory.Springer-Verlag, Berlin-Heidelberg-New York (1976). MR 0427349 | 
| Reference:
             | 
[4] Faith, C., Utumi, Y.: Quasi-injective modules and their endomorphism rings.Arch. Math. 15 (1964), 166-174. Zbl 0131.27502, MR 0166226, 10.1007/BF01589182 | 
| Reference:
             | 
[5] Fuchs, L.: Infinite Abelian Groups.Vol. II, Academic Press, New York (1973). Zbl 0257.20035, MR 0349869 | 
| Reference:
             | 
[6] Johnson, R. E., Wong, E. T.: Quasi-injective modules and irreducible rings.J. Lond. Math. Soc. 36 (1961), 260-268. Zbl 0103.02203, MR 0131445, 10.1112/jlms/s1-36.1.260 | 
| Reference:
             | 
[7] Osofsky, B. L.: Endomorphism rings of quasi-injective modules.Canad. J. Math. 20 (1968), 895-903. Zbl 0162.05101, MR 0231856, 10.4153/CJM-1968-086-3 | 
| Reference:
             | 
[8] Rangaswamy, K. M.: Abelian groups with endomorphic images of special types.J. of Algebra 6 (1969), 271-280. MR 0217180, 10.1016/0021-8693(67)90082-8 | 
| Reference:
             | 
[9] Stroppel, M.: Locally Compact Groups.EMS Textbooks in Mathematics, European Mathematical Society Publishing House, Zurich (2006). Zbl 1102.22005, MR 2226087 | 
| Reference:
             | 
[10] Ursul, M.: Topological Rings Satisfying Compactness Conditions.Mathematics and its Applications, Vol. 549, Kluwer Academic Publishers, Dordrecht-Boston-London (2002). Zbl 1041.16037, MR 1959470 | 
| Reference:
             | 
[11] Utumi, Y.: On quotient rings.Osaka Math. J. 8 (1956), 1-18. Zbl 0070.26601, MR 0078966 | 
| Reference:
             | 
[12] Utumi, Y.: Self-injective rings.J. Algebra 6 (1967), 56-64. Zbl 0161.03803, MR 0209321, 10.1016/0021-8693(67)90013-0 | 
| Reference:
             | 
[13] Warner, S.: Topological Rings.North-Holland, Amsterdam-London-New York-Tokyo (1993). Zbl 0785.13008, MR 1240057 | 
| . |