[2] Bangerezako, G.: An Introduction to $q$-Difference Equations. Preprint, Bujumbura (2007).
[5] Bingham, N. H., Goldie, C. M., Teugels, J. L.: 
Regular Variation. Encyclopedia of Mathematics and its Applications, Vol. 27, Cambridge University Press (1989). 
MR 1015093 | 
Zbl 0667.26003[7] Bohner, M., Peterson, A. C.: 
Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001). 
MR 1843232 | 
Zbl 0978.39001[10] Carmichael, R. D.: 
The general theory of linear $q$-difference equations. Amer. J. Math. 34 (1912), 147-168. 
DOI 10.2307/2369887 | 
MR 1506145[11] Cheung, P., Kac, V.: 
Quantum Calculus. Springer-Verlag, Berlin-Heidelberg-New York (2002). 
MR 1865777 | 
Zbl 0986.05001[12] Vizio, L. Di, Ramis, J.-P., Sauloy, J., Zhang, C.: 
Équations aux $q$-différences. Gaz. Math., Soc. Math. Fr. 96 (2003), 20-49. 
MR 1988639 | 
Zbl 1063.39015[15] Gasper, G., Rahman, M.: 
Basic Hypergeometric Series. Second edition, Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press (2004). 
MR 2128719 | 
Zbl 1129.33005[17] Karamata, J.: Sur certain ``Tauberian theorems'' de M. M. Hardy et Littlewood. Mathematica Cluj 3 (1930), 33-48.
[18] Koornwinder, T. H.: 
q-Special Functions, A Tutorial, Representations of Lie groups and quantum groups. V. Baldoni and M. A. Picardello Longman Scientific and Technical (1994), 46-128. 
MR 1431306[20] Marić, V.: 
Regular Variation and Differential Equations. Lecture Notes in Mathematics. 1726, Springer-Verlag, Berlin-Heidelberg-New York (2000). 
MR 1753584[22] Řehák, P.: 
How the constants in Hille-Nehari theorems depend on time scales. Adv. Difference Equ. 2006 (2006), 1-15. 
MR 2255171[23] Řehák, P.: 
Regular variation on time scales and dynamic equations. Aust. J. Math. Anal. Appl. 5 (2008), 1-10. 
MR 2461676[26] Řehák, P., Vítovec, J.: 
$q$-Karamata functions and second order $q$-difference equations. Electron. J. Qual. Theory Differ. Equ. 24 (2011), 20 pp. 
MR 2786478[27] Seneta, E.: 
Regularly Varying Functions. Lecture Notes in Mathematics 508, Springer-Verlag, Berlin-Heidelberg-New York (1976). 
MR 0453936 | 
Zbl 0324.26002[28] Swanson, C. A.: 
Comparison and Oscillation Theory of Linear Differential Equations. Academic Press, New York (1968). 
MR 0463570 | 
Zbl 0191.09904[30] Put, M. van der, Reversat, M.: 
Galois theory of $q$-difference equations. Ann. Fac. Sci. Toulouse, Math. (6) 16 (2007), 665-718. 
DOI 10.5802/afst.1164 | 
MR 2379057