Previous |  Up |  Next


voting system; preference; position
Voting systems produce an aggregated result of the individual preferences of the voters. In many cases the aggregated collective preference – the result of the voting procedure – mirrors much more than anything else the characteristics of the voting systems. Preferential voting systems work most of the time with equidistant differences between the adjacent preferences of an individual voter. They produce, as voting systems usually do, some paradoxical results under special circumstances. However, the distances between the preferences can be understood as the function of the position in the sequence of preferences and can be aggregated in different ways fulfilling the basic attributes of the voting system. This approach at least allows us to avoid the worst paradoxical situations or to design a voting system containing some special needs.
[1] Borda, J. C.: Memoire sur les elections au scrutin. Histoire de l'Academie Royale des Sciences 1784.
[2] Brams, S. J.: Mathematics and Democracy: Designing Better Voting and Fair-Division Procedures. Princeton University Press 2008. MR 2382290 | Zbl 1151.91001
[3] Bystrický, R.: Voting system with various distances between preferences. In: Proc. AGOP 2011, Benevento 2011.
[4] Contreras, I.: A distance-based consensus model with flexible choice of rank-position weights. Group Decision and Negotiation 19, (2010), 441–456. DOI 10.1007/s10726-008-9127-9
[5] Cook, W. D., Seiford, L. M.: Priority ranking and consensus formation. Management Sci. 24, (1978), 16, 1721–1732. DOI 10.1287/mnsc.24.16.1721 | Zbl 0486.90005
[6] Cook, W. D., Seiford, L. M.: On the Borda-Kendall consensus method for priority ranking problems. Management Sci. 28, (1982), 6, 621–637. DOI 10.1287/mnsc.28.6.621 | MR 0668270 | Zbl 0482.90002
[7] Eckert, D., Klamler, C., Mitlöhner, J., Schlötterer, C.: A distance-based comparison of basic voting rules. Central Europ. J. Oper. Res. 14, (2006), 377–386. DOI 10.1007/s10100-006-0011-x | MR 2279338
[8] Fishburn, P. C.: Condorcet social choice functions. SIAM J. Appl. Math. 33, (1977), 3, 469–489. DOI 10.1137/0133030 | MR 0449470 | Zbl 0369.90002
[9] Kemeny, J.: Mathematics without numbers. Daedalus 88, (1959), 571–591.
[10] Kendall, M.: Rank Correlation Methods. Hafner, New York 1962. Zbl 0732.62057
[11] Nurmi, H.: Voting Paradoxes and How to Deal With Them. Springer 1999. MR 1716482 | Zbl 0943.91030
[12] Saari, D.: Basic Geometry of Voting. Springer 1995. MR 1410265 | Zbl 0873.90006
[13] Saari, D., Merlin, V.: A geometric examination of Kemeny's rule. Soc. Choice Welfare 17 (2000), 403–438. DOI 10.1007/s003550050171 | MR 1762588 | Zbl 1069.91538
[14] Vavríková, L.: Transitive Preference Structures and Multicriteria Decision Making. Ph.D. Thesis. STU Bratislava 2011.
[15] Young, H. P.: Social choice scoring functions. SIAM J. Appl. Math. 28 (1975), 824–838. DOI 10.1137/0128067 | MR 0371438 | Zbl 0277.92007
Partner of
EuDML logo