| Title: | The AP-Denjoy and AP-Henstock integrals revisited (English) | 
| Author: | Skvortsov, Valentin A. | 
| Author: | Sworowski, Piotr | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 62 | 
| Issue: | 3 | 
| Year: | 2012 | 
| Pages: | 581-591 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | The note is related to a recently published paper J. M. Park, J. J. Oh, C.-G. Park, D. H. Lee: The AP-Denjoy and AP-Henstock integrals. Czech. Math. J. 57 (2007), 689–696, which concerns a descriptive characterization of the approximate Kurzweil-Henstock integral. We bring to attention known results which are stronger than those contained in the aforementioned work. We show that some of them can be formulated in terms of a derivation basis defined by a local system of which the approximate basis is known to be a particular case. We also consider the relation between the $\sigma $-finiteness of variational measure generated by a function and the classical notion of the generalized bounded variation. (English) | 
| Keyword: | approximate Kurzweil-Henstock integral | 
| Keyword: | approximate continuity | 
| Keyword: | local system | 
| Keyword: | variational measure | 
| MSC: | 26A39 | 
| MSC: | 26A42 | 
| MSC: | 26A46 | 
| idZBL: | Zbl 1265.26019 | 
| idMR: | MR2984620 | 
| DOI: | 10.1007/s10587-012-0050-5 | 
| . | 
| Date available: | 2012-11-10T20:57:22Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/143010 | 
| . | 
| Reference: | [1] Bongiorno, B., Piazza, L. Di, Skvortsov, V. A.: On dyadic integrals and some other integrals associated with local systems.J. Math. Anal. Appl. 271 (2002), 506-524. Zbl 1010.26006, MR 1923649, 10.1016/S0022-247X(02)00146-4 | 
| Reference: | [2] Bongiorno, D., Piazza, L. Di, Skvortsov, V. A.: Variational measures related to local systems and the Ward property of $\mathcal P$-adic path bases.Czech. Math. J. 56(131) (2006), 559-578. MR 2291756, 10.1007/s10587-006-0037-1 | 
| Reference: | [3] Ene, V.: Real Functions---Current Topics. Lecture Notes in Mathematics, Vol. 1603.Springer Berlin (1995). MR 1369575 | 
| Reference: | [4] Ene, V.: Characterizations of $ VBG \cap\mathcal N$.Real Anal. Exch. 23 (1997), 611-630. MR 1639992, 10.2307/44153985 | 
| Reference: | [5] Ene, V.: Thomson's variational measure.Real Anal. Exch. 24 (1998), 523-565. Zbl 0968.26007, MR 1704732, 10.2307/44152978 | 
| Reference: | [6] Gordon, R. A.: The inversion of approximate and dyadic derivatives using an extension of the Henstock integral.Real Anal. Exch. 16 (1991), 154-168. Zbl 0723.26005, MR 1087481 | 
| Reference: | [7] Park, J. M., Oh, J. J., Kim, J., Lee, H. K.: The equivalence of the {AP}-Henstock and {AP}-Denjoy integrals.J. Chungcheong Math. Soc. 17 (2004), 103-110. | 
| Reference: | [8] Park, J. M., Kim, Y. K., Yoon, J. H.: Some properties of the {AP}-Denjoy integral.Bull. Korean Math. Soc. 42 (2005), 535-541. Zbl 1090.26002, MR 2162209, 10.4134/BKMS.2005.42.3.535 | 
| Reference: | [9] Park, J. M., Oh, J. J., Park, C.-G., Lee, D. H.: The {AP}-Denjoy and {AP}-Henstock integrals.Czech. Math. J. 57(132) (2007), 689-696. Zbl 1174.26308, MR 2337623, 10.1007/s10587-007-0106-0 | 
| Reference: | [10] Pfeffer, W. F.: The Riemann Approach to Integration: Local Geometric Theory. Cambridge Tracts in Mathematics.109 Cambridge (1993). MR 1268404 | 
| Reference: | [11] Saks, S.: Theory of the Integral.G. E. Stechert & Co New York (1937). Zbl 0017.30004 | 
| Reference: | [12] Sworowski, P., Skvortsov, V. A.: Variational measure determined by an approximative differential basis.Mosc. Univ. Math. Bull. 57 (2002), 37-40. MR 1933126 | 
| Reference: | [13] Thomson, B. S.: Derivation bases on the real line.Real Anal. Exch. 8 (1983), 67-207, 278-442. Zbl 0525.26003, 10.2307/44151585 | 
| Reference: | [14] Thomson, B. S.: Real Functions. Lecture Notes in Mathematics.1170 Springer Berlin (1985). MR 0818744 | 
| Reference: | [15] Wang, C., Ding, C. S.: An integral involving Thomson's local systems.Real Anal. Exch. 19 (1994), 248-253. Zbl 0802.26004 | 
| . |