[2] Bongiorno, D., Piazza, L. Di, Skvortsov, V. A.: 
Variational measures related to local systems and the Ward property of $\mathcal P$-adic path bases. Czech. Math. J. 56(131) (2006), 559-578. 
DOI 10.1007/s10587-006-0037-1 | 
MR 2291756[3] Ene, V.: 
Real Functions---Current Topics. Lecture Notes in Mathematics, Vol. 1603. Springer Berlin (1995). 
MR 1369575[6] Gordon, R. A.: 
The inversion of approximate and dyadic derivatives using an extension of the Henstock integral. Real Anal. Exch. 16 (1991), 154-168. 
MR 1087481 | 
Zbl 0723.26005[7] Park, J. M., Oh, J. J., Kim, J., Lee, H. K.: The equivalence of the {AP}-Henstock and {AP}-Denjoy integrals. J. Chungcheong Math. Soc. 17 (2004), 103-110.
[10] Pfeffer, W. F.: 
The Riemann Approach to Integration: Local Geometric Theory. Cambridge Tracts in Mathematics. 109 Cambridge (1993). 
MR 1268404[11] Saks, S.: 
Theory of the Integral. G. E. Stechert & Co New York (1937). 
Zbl 0017.30004[12] Sworowski, P., Skvortsov, V. A.: 
Variational measure determined by an approximative differential basis. Mosc. Univ. Math. Bull. 57 (2002), 37-40. 
MR 1933126[14] Thomson, B. S.: 
Real Functions. Lecture Notes in Mathematics. 1170 Springer Berlin (1985). 
MR 0818744[15] Wang, C., Ding, C. S.: 
An integral involving Thomson's local systems. Real Anal. Exch. 19 (1994), 248-253. 
Zbl 0802.26004