| Title: | Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition (English) | 
| Author: | Lee, Hyunjin | 
| Author: | Kim, Seonhui | 
| Author: | Suh, Young Jin | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 62 | 
| Issue: | 3 | 
| Year: | 2012 | 
| Pages: | 849-861 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | In this paper, first we introduce a new notion of commuting condition that $\phi \phi _{1} A = A \phi _{1} \phi $ between the shape operator $A$ and the structure tensors $\phi $ and $\phi _{1}$ for real hypersurfaces in $G_2({\mathbb C}^{m+2})$. Suprisingly, real hypersurfaces of type $(A)$, that is, a tube over a totally geodesic $G_{2}(\mathbb C^{m+1})$ in complex two plane Grassmannians $G_2({\mathbb C}^{m+2})$ satisfy this commuting condition. Next we consider a complete classification of Hopf hypersurfaces in $G_2({\mathbb C}^{m+2})$ satisfying the commuting condition. Finally we get a characterization of Type $(A)$ in terms of such commuting condition $\phi \phi _{1} A = A \phi _{1} \phi $. (English) | 
| Keyword: | real hypersurface | 
| Keyword: | complex two-plane Grassmannians | 
| Keyword: | Hopf hypersurface | 
| Keyword: | commuting shape operator | 
| MSC: | 11R52 | 
| MSC: | 53C40 | 
| MSC: | 53C50 | 
| MSC: | 53C55 | 
| idZBL: | Zbl 1265.53075 | 
| idMR: | MR2984638 | 
| DOI: | 10.1007/s10587-012-0049-y | 
| . | 
| Date available: | 2012-11-10T21:22:32Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/143029 | 
| . | 
| Related article: | http://dml.cz/handle/10338.dmlcz/143955 | 
| . | 
| Reference: | [1] Alekseevskii, D. V.: Compact quaternion spaces.Funkts. Anal. Prilozh. 2 (1968), 11-20. MR 0231314 | 
| Reference: | [2] Berndt, J.: Riemannian geometry of complex two-plane Grassmannian.Rend. Semin. Mat., Torino 55 (1997), 19-83. MR 1626089 | 
| Reference: | [3] Berndt, J., Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians.Monatsh. Math. 127 (1999), 1-14. Zbl 0920.53016, MR 1666307, 10.1007/s006050050018 | 
| Reference: | [4] Berndt, J., Suh, Y. J.: Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians.Monatsh. Math. 137 (2002), 87-98. Zbl 1015.53034, MR 1937621, 10.1007/s00605-001-0494-4 | 
| Reference: | [5] Lee, H., Suh, Y. J.: Real hypersurfaces of type $B$ in complex two-plane Grassmannians related to the Reeb vector.Bull. Korean Math. Soc. 47 (2010), 551-561. Zbl 1206.53064, MR 2666376, 10.4134/BKMS.2010.47.3.551 | 
| Reference: | [6] Pérez, J. D., Suh, Y. J.: The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians.J. Korean Math. Soc. 44 (2007), 211-235. Zbl 1156.53034, MR 2283469, 10.4134/JKMS.2007.44.1.211 | 
| Reference: | [7] Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians with commuting shape operator.Bull. Aust. Math. Soc. 68 (2003), 379-393. Zbl 1058.53046, MR 2027682, 10.1017/S0004972700037795 | 
| . |