Previous |  Up |  Next


impedance control; Lyapunov stability; robot manipulator
This paper presents a design tool of impedance controllers for robot manipulators, based on the formulation of Lyapunov functions. The proposed control approach addresses two challenges: the regulation of the interaction forces, ensured by the impedance error converging to zero, while preserving a suitable path tracking despite constraints imposed by the environment. The asymptotic stability of an equilibrium point of the system, composed by full nonlinear robot dynamics and the impedance control, is demonstrated according to Lyapunov's direct method. The system's performance was tested through the real-time experimental implementation of an interaction task involving a two degree-of-freedom, direct-drive robot.
[1] Anderson, R., Spong, M.: Hybrid impedance control of robotic manipulators. IEEE Trans. Robotic. Autom. 4 (1988), 5, 549-556. DOI 10.1109/56.20440
[2] Canudas, C., Siciliano, B., Bastin, G.: Theory of Robot Control. Springer-Verlag, 1996.
[3] Carelli, R., Kelly, R.: An adaptive impedance/force controller for robot manipulators. IEEE Trans. Automat. Control 36 (1991), 8, 967-971. DOI 10.1109/9.133190 | MR 1116453 | Zbl 0737.93050
[4] Chiaverini, S., Siciliano, B., Villani, L.: A survey of robot interaction control schemes with experimental comparison. IEEE-ASME Trans. Mech. 4 (1999), 273-285. DOI 10.1109/3516.789685
[5] González, J., Widmann, G.: A force commanded impedance control scheme for robots with hard nonlinearities. IEEE Trans. Control Syst. Theory 3 (1995), 4, 398-408. DOI 10.1109/87.481964
[6] Hagn, U., Ortmaier, T., Konietschke, R., Kuebler, B., Seibold, U., Tobergte, A., Nickl, M., Joerg, S., Hirzinger, G.: Telemanipulators for remote minimally invasive surgery. IEEE Robot. Automat. Magazine 15 (2008), 4, 28-38. DOI 10.1109/MRA.2008.929925
[7] Hagn, U., Nickl, M., Jörg, S., Passig, G., Bahls, T., Nothhelfer, A., Hacker, F., Le-Tien, L., Albu-Schäffer, A., Konietschke, R., Grebenstein, M., Warpup, R., Haslinger, R., Frommberger, M., Hirzinger, G.: The DLR MIRO: A versatile lightweight robot for surgical applications. Ind. Robot 35 (2008), 4, 324-336. DOI 10.1108/01439910810876427
[8] Hogan, N.: Impedance control: An approach to manipulation: Part I - Theory, Part II - Implementation and Part III - Applications. J. Dyn. Syst-T ASME 107 (1985), 1-24. DOI 10.1115/1.3140702
[9] Hoon-Kang, S., Jin, M., Hun-Chang, P.: A solution to the accuracy/robustness dilemma in impedance control. IEEE-ASME Trans. Mech. 14 (2009), 3, 282-294. DOI 10.1109/TMECH.2008.2005524
[10] Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, New York 1985. MR 0832183 | Zbl 0801.15001
[11] Jager, A. de, Banens, J.: Experimental evaluation of robot controllers. In: Proc. 33rd Conf. Decision Control, Lake Buena Vista 1994, pp. 363-368.
[12] Jaritz, A., Spong, M. W.: An experimental comparison of robust control algorithms on a direct drive manipulators. IEEE Trans. Control Syst. Theory 4 (1996), 627-640. DOI 10.1109/87.541692
[13] Kazerooni, H.: Robust nonlinear impedance control for robot manipulators. In: Proc. IEEE Int. Conf. Robotic. Autom. 1987, pp. 741-750.
[14] Kim, K., Hori, Y.: Experimental evaluation of adaptive and robust schemes for robot manipulator control. IEEE Trans. Ind. Electron. 42 (1995), 653-662. DOI 10.1109/41.475506
[15] Krebs, H. I., Ferraro, M., P, S., Buerger, Newbery, M. J., Makiyama, A., Sandmann, M., Lynch, D., Volpe, B. T., Hogan, N.: Rehabilitation robotics: Pilot trial of a spatial extension for MIT-manus. J. Neuroeng. Rehabil. 1 (2004), 5. DOI 10.1186/1743-0003-1-5
[16] Krebs, H. I., Volpe, B. T., L, M., Aisen, Hening, W., Adamovich, S., Poizner, H., Subrahmanyan, K., Hogan, N.: Robotic applications in neuromotor rehabilitation. Robotica 21 (2003), 3-11. DOI 10.1017/S0263574702004587
[17] Lippiello, V., Siciliano, B., Villani, L.: Robot interaction control using force and vision. In: Proc. IEEE-RSJ Int. Conf. Robot. Syst., 2006, pp. 1470-1475. Zbl 1118.93337
[18] Lippiello, V., Siciliano, B., Villani, L.: A position-based visual impedance control for robot manipulators. In: Proc. IEEE Int. Conf. Robotic. Autom., Roma 2007, pp. 2068-2073.
[19] Marchal-Crespo, L., Reinkensmeyer, D. J.: Review of control strategies for robotic movement training after neurologic injury. J. Neuroeng. Rehabil. 6 (2009), 20. DOI 10.1186/1743-0003-6-20
[20] McCormick, W., Schwartz, H.: An investigation of impedance control for robot manipulators. Internat. J. Robot. Res. 12 (1993), 5, 473-489. DOI 10.1177/027836499301200507
[21] Okamura, A. M.: Methods for haptic feedback in teleoperated robot-assisted surgery. Ind. Robot 31(6) (2004), 499-508. DOI 10.1108/01439910410566362
[22] Raibert, M., Craig, J.: Hybrid position/force control of manipulators. J. Dyn. Syst-T ASME 102 (1981), 126-133. DOI 10.1115/1.3139652
[23] Reyes, F., Kelly, R.: Experimental evaluation of identification schemes on a direct drive robot. Robotica 15 (1997), 563-571. DOI 10.1017/S0263574797000659
[24] Sciavicco, L., Siciliano, B.: Modeling and Control of Robot Manipulators. McGraw-Hill, New York 1996.
[25] Siciliano, B., Villani, L.: Robot Force Control. Kluwer Academic Publishers, Boston 1999. Zbl 0940.93006
[26] Spong, M. W., Vidyasagar, M.: Robots Dynamics and Control. John Wiley and Sons, New York 1989.
[27] Takegaki, M., Arimoto, S.: A new feedback method for dynamic control of manipulators. J. Dyn. Syst-T ASME 102 (1981), 119-125. DOI 10.1115/1.3139651 | Zbl 0473.93012
[28] Tsoi, Y. H., Xie, S. Q.: Impedance control of ankle rehabilitation robot. In: Proc. IEEE Int. Conf. Robotic. Bio., Bangkok 2009.
[29] Whitcomb, L., Rizzi, A., Koditschek, D. E.: Comparative experiments with a new adaptive controller for robot arms. IEEE Trans. Robotic. Autom. 9 (1993), 59-70. DOI 10.1109/70.210795
[30] Whitney, D.: Historical perspective and state of the art in robot force control. In: Proc. IEEE Int. Conf. Robotic. Autom. 1985, pp. 262-268.
Partner of
EuDML logo