Previous |  Up |  Next


Title: A Lyapunov-based design tool of impedance controllers for robot manipulators (English)
Author: Mendoza, Marco
Author: Bonilla, Isela
Author: Reyes, Fernando
Author: González-Galván, Emilio
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 6
Year: 2012
Pages: 1136-1155
Summary lang: English
Category: math
Summary: This paper presents a design tool of impedance controllers for robot manipulators, based on the formulation of Lyapunov functions. The proposed control approach addresses two challenges: the regulation of the interaction forces, ensured by the impedance error converging to zero, while preserving a suitable path tracking despite constraints imposed by the environment. The asymptotic stability of an equilibrium point of the system, composed by full nonlinear robot dynamics and the impedance control, is demonstrated according to Lyapunov's direct method. The system's performance was tested through the real-time experimental implementation of an interaction task involving a two degree-of-freedom, direct-drive robot. (English)
Keyword: impedance control
Keyword: Lyapunov stability
Keyword: robot manipulator
MSC: 68T40
MSC: 93C85
MSC: 93D05
idMR: MR3052878
Date available: 2013-01-10T09:21:42Z
Last updated: 2013-09-24
Stable URL:
Reference: [1] Anderson, R., Spong, M.: Hybrid impedance control of robotic manipulators..IEEE Trans. Robotic. Autom. 4 (1988), 5, 549-556. 10.1109/56.20440
Reference: [2] Canudas, C., Siciliano, B., Bastin, G.: Theory of Robot Control..Springer-Verlag, 1996.
Reference: [3] Carelli, R., Kelly, R.: An adaptive impedance/force controller for robot manipulators..IEEE Trans. Automat. Control 36 (1991), 8, 967-971. Zbl 0737.93050, MR 1116453, 10.1109/9.133190
Reference: [4] Chiaverini, S., Siciliano, B., Villani, L.: A survey of robot interaction control schemes with experimental comparison..IEEE-ASME Trans. Mech. 4 (1999), 273-285. 10.1109/3516.789685
Reference: [5] González, J., Widmann, G.: A force commanded impedance control scheme for robots with hard nonlinearities..IEEE Trans. Control Syst. Theory 3 (1995), 4, 398-408. 10.1109/87.481964
Reference: [6] Hagn, U., Ortmaier, T., Konietschke, R., Kuebler, B., Seibold, U., Tobergte, A., Nickl, M., Joerg, S., Hirzinger, G.: Telemanipulators for remote minimally invasive surgery..IEEE Robot. Automat. Magazine 15 (2008), 4, 28-38. 10.1109/MRA.2008.929925
Reference: [7] Hagn, U., Nickl, M., Jörg, S., Passig, G., Bahls, T., Nothhelfer, A., Hacker, F., Le-Tien, L., Albu-Schäffer, A., Konietschke, R., Grebenstein, M., Warpup, R., Haslinger, R., Frommberger, M., Hirzinger, G.: The DLR MIRO: A versatile lightweight robot for surgical applications..Ind. Robot 35 (2008), 4, 324-336. 10.1108/01439910810876427
Reference: [8] Hogan, N.: Impedance control: An approach to manipulation: Part I - Theory, Part II - Implementation and Part III - Applications..J. Dyn. Syst-T ASME 107 (1985), 1-24. 10.1115/1.3140702
Reference: [9] Hoon-Kang, S., Jin, M., Hun-Chang, P.: A solution to the accuracy/robustness dilemma in impedance control..IEEE-ASME Trans. Mech. 14 (2009), 3, 282-294. 10.1109/TMECH.2008.2005524
Reference: [10] Horn, R., Johnson, C.: Matrix Analysis..Cambridge University Press, New York 1985. Zbl 0801.15001, MR 0832183
Reference: [11] Jager, A. de, Banens, J.: Experimental evaluation of robot controllers..In: Proc. 33rd Conf. Decision Control, Lake Buena Vista 1994, pp. 363-368.
Reference: [12] Jaritz, A., Spong, M. W.: An experimental comparison of robust control algorithms on a direct drive manipulators..IEEE Trans. Control Syst. Theory 4 (1996), 627-640. 10.1109/87.541692
Reference: [13] Kazerooni, H.: Robust nonlinear impedance control for robot manipulators..In: Proc. IEEE Int. Conf. Robotic. Autom. 1987, pp. 741-750.
Reference: [14] Kim, K., Hori, Y.: Experimental evaluation of adaptive and robust schemes for robot manipulator control..IEEE Trans. Ind. Electron. 42 (1995), 653-662. 10.1109/41.475506
Reference: [15] Krebs, H. I., Ferraro, M., P, S., Buerger, Newbery, M. J., Makiyama, A., Sandmann, M., Lynch, D., Volpe, B. T., Hogan, N.: Rehabilitation robotics: Pilot trial of a spatial extension for MIT-manus..J. Neuroeng. Rehabil. 1 (2004), 5. 10.1186/1743-0003-1-5
Reference: [16] Krebs, H. I., Volpe, B. T., L, M., Aisen, Hening, W., Adamovich, S., Poizner, H., Subrahmanyan, K., Hogan, N.: Robotic applications in neuromotor rehabilitation..Robotica 21 (2003), 3-11. 10.1017/S0263574702004587
Reference: [17] Lippiello, V., Siciliano, B., Villani, L.: Robot interaction control using force and vision..In: Proc. IEEE-RSJ Int. Conf. Robot. Syst., 2006, pp. 1470-1475. Zbl 1118.93337
Reference: [18] Lippiello, V., Siciliano, B., Villani, L.: A position-based visual impedance control for robot manipulators..In: Proc. IEEE Int. Conf. Robotic. Autom., Roma 2007, pp. 2068-2073.
Reference: [19] Marchal-Crespo, L., Reinkensmeyer, D. J.: Review of control strategies for robotic movement training after neurologic injury..J. Neuroeng. Rehabil. 6 (2009), 20. 10.1186/1743-0003-6-20
Reference: [20] McCormick, W., Schwartz, H.: An investigation of impedance control for robot manipulators..Internat. J. Robot. Res. 12 (1993), 5, 473-489. 10.1177/027836499301200507
Reference: [21] Okamura, A. M.: Methods for haptic feedback in teleoperated robot-assisted surgery..Ind. Robot 31(6) (2004), 499-508. 10.1108/01439910410566362
Reference: [22] Raibert, M., Craig, J.: Hybrid position/force control of manipulators..J. Dyn. Syst-T ASME 102 (1981), 126-133. 10.1115/1.3139652
Reference: [23] Reyes, F., Kelly, R.: Experimental evaluation of identification schemes on a direct drive robot..Robotica 15 (1997), 563-571. 10.1017/S0263574797000659
Reference: [24] Sciavicco, L., Siciliano, B.: Modeling and Control of Robot Manipulators..McGraw-Hill, New York 1996.
Reference: [25] Siciliano, B., Villani, L.: Robot Force Control..Kluwer Academic Publishers, Boston 1999. Zbl 0940.93006
Reference: [26] Spong, M. W., Vidyasagar, M.: Robots Dynamics and Control..John Wiley and Sons, New York 1989.
Reference: [27] Takegaki, M., Arimoto, S.: A new feedback method for dynamic control of manipulators..J. Dyn. Syst-T ASME 102 (1981), 119-125. Zbl 0473.93012, 10.1115/1.3139651
Reference: [28] Tsoi, Y. H., Xie, S. Q.: Impedance control of ankle rehabilitation robot..In: Proc. IEEE Int. Conf. Robotic. Bio., Bangkok 2009.
Reference: [29] Whitcomb, L., Rizzi, A., Koditschek, D. E.: Comparative experiments with a new adaptive controller for robot arms..IEEE Trans. Robotic. Autom. 9 (1993), 59-70. 10.1109/70.210795
Reference: [30] Whitney, D.: Historical perspective and state of the art in robot force control..In: Proc. IEEE Int. Conf. Robotic. Autom. 1985, pp. 262-268.


Files Size Format View
Kybernetika_48-2012-6_5.pdf 548.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo