| Title:
             | 
The strongest t-norm for fuzzy metric spaces (English) | 
| Author:
             | 
Qiu, Dong | 
| Author:
             | 
Zhang, Weiquan | 
| Language:
             | 
English | 
| Journal:
             | 
Kybernetika | 
| ISSN:
             | 
0023-5954 | 
| Volume:
             | 
49 | 
| Issue:
             | 
1 | 
| Year:
             | 
2013 | 
| Pages:
             | 
141-148 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
In this paper, we prove that for a given positive continuous t-norm there is a fuzzy metric space in the sense of George and Veeramani, for which the given t-norm is the strongest one. For the opposite problem, we obtain that there is a fuzzy metric space for which there is no strongest t-norm. As an application of the main results, it is shown that there are infinite non-isometric fuzzy metrics on an infinite set. (English) | 
| Keyword:
             | 
fuzzy metric space | 
| Keyword:
             | 
t-norm | 
| Keyword:
             | 
isometry | 
| Keyword:
             | 
analysis | 
| MSC:
             | 
62A10 | 
| MSC:
             | 
93E12 | 
| . | 
| Date available:
             | 
2013-03-05T15:13:23Z | 
| Last updated:
             | 
2013-07-31 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/143245 | 
| . | 
| Reference:
             | 
[1] Dombi, J.: A general class of fuzzy operators, the demorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators..Fuzzy Set and Systems 8 (1982), 149-163. Zbl 0494.04005, MR 0666628, 10.1016/0165-0114(82)90005-7 | 
| Reference:
             | 
[2] George, A., Veeramani, P.: On some results in fuzzy metric spaces..Fuzzy Set and Systems 64 (1994), 395-399. Zbl 0843.54014, MR 1289545, 10.1016/0165-0114(94)90162-7 | 
| Reference:
             | 
[3] Gregori, V., Romaguera, S.: On completion of fuzzy metrics paces..Fuzzy Set and Systems 130 (2002), 399-404. MR 1928435, 10.1016/S0165-0114(02)00115-X | 
| Reference:
             | 
[4] Gregori, V., Morillas, S., Sapena, A.: Examples of fuzzy metrics and applications..Fuzzy Set and Systems 170 (2011), 95-111. Zbl 1210.94016, MR 2775611 | 
| Reference:
             | 
[5] Klement, E. P., Mesiar, R., Pap, E.: Triangular norms..Kluwer Academic, Dordrecht 2000. Zbl 1087.20041, MR 1790096 | 
| Reference:
             | 
[6] Kramosil, I., Michálek, J.: Fuzzy metric and statistical metric spaces..Kybernetika 11 (1975), 326-334. MR 0410633 | 
| Reference:
             | 
[7] Menger, K.: Statistical metrics..Proc. Nat. Acad. Sci. USA 28 (1942), 535-537. Zbl 0063.03886, MR 0007576, 10.1073/pnas.28.12.535 | 
| Reference:
             | 
[8] Sapena, A.: A contribution to the study of fuzzy metric spaces..Appl. Gen. Topology 2 (2001), 63-76. Zbl 1249.76040, MR 1863833 | 
| Reference:
             | 
[9] Schweizer, B., Sklar, A.: Statistical metric spaces..Pacific J. Math. 10 (1960), 314-334. Zbl 0136.39301, MR 0115153 | 
| Reference:
             | 
[10] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces..North Holland, Amsterdam 1983. Zbl 0546.60010, MR 0790314 | 
| Reference:
             | 
[11] Thorp, E.: Best possible triangle inequalities for statistical metric spaces..Proc. Amer. Math. Soc. 11 (1960), 734-740. Zbl 0125.37002, MR 0119302, 10.1090/S0002-9939-1960-0119302-6 | 
| . |