| Title:
             | 
On some properties of $\alpha $-planes of type-2 fuzzy sets (English) | 
| Author:
             | 
Takáč, Zdenko | 
| Language:
             | 
English | 
| Journal:
             | 
Kybernetika | 
| ISSN:
             | 
0023-5954 | 
| Volume:
             | 
49 | 
| Issue:
             | 
1 | 
| Year:
             | 
2013 | 
| Pages:
             | 
149-163 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
Some basic properties of $\alpha$-planes of type-2 fuzzy sets are investigated and discussed in connection with the similar properties of $\alpha$-cuts of type-1 fuzzy sets. It is known, that standard intersection and standard union of type-1 fuzzy sets (it means intersection and union under minimum t-norm and maximum t-conorm, respectively) are the only cutworthy operations for type-1 fuzzy sets. Recently, a similar property was declared to be true also for $\alpha$-planes of type-2 fuzzy sets in a few papers. Thus, we study under which t-norms and which t-conorms are intersection and union of the type-2 fuzzy sets preserved in the $\alpha$-planes. Note that understanding of the term $\alpha$-plane is somewhat confusing in recent type-2 fuzzy sets literature. We discuss this problem and show how it relates to obtained results. (English) | 
| Keyword:
             | 
type-2 fuzzy sets | 
| Keyword:
             | 
$\alpha $-plane | 
| Keyword:
             | 
intersection of type-2 fuzzy sets | 
| Keyword:
             | 
union of type-2 fuzzy sets | 
| Keyword:
             | 
fuzzy sets | 
| MSC:
             | 
03E72 | 
| MSC:
             | 
68T37 | 
| . | 
| Date available:
             | 
2013-03-05T15:14:30Z | 
| Last updated:
             | 
2013-07-31 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/143246 | 
| . | 
| Reference:
             | 
[1] Karnik, N., Mendel, J.: Operations on type-2 fuzzy sets..Fuzzy Sets and Systems 122 (2001), 327-348. Zbl 1010.03047, MR 1854822, 10.1016/S0165-0114(00)00079-8 | 
| Reference:
             | 
[2] Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Application..Upper-Saddle River, Prentice-Hall, NJ 1995. MR 1329731 | 
| Reference:
             | 
[3] Kolesárová, A., Kováčová, A.: Fuzzy množiny a ich aplikácie..STU, Bratislava 2004. | 
| Reference:
             | 
[4] Liu, F.: An Efficient Centroid Type Reduction Strategy for General Type-2 Fuzzy Logic System..IEEE Comput. Intell. Soc., Walter J. Karplus Summer Research Grant Report 2006. | 
| Reference:
             | 
[5] Liu, F.: An efficient centroid type reduction strategy for general type-2 fuzzy logic system..Inform. Sci. 178 (2008), 2224-2236. MR 2419730, 10.1016/j.ins.2007.11.014 | 
| Reference:
             | 
[6] Mendel, J. M.: Comments on '$\alpha$-plane representation for type-2 fuzzy sets: Theory and applications'..IEEE Trans. Fuzzy Syst. 18 (2010), 229-230. 10.1109/TFUZZ.2009.2039368 | 
| Reference:
             | 
[7] Mendel, J. M., John, R. I.: Type-2 fuzzy sets made simple..IEEE Trans. Fuzzy Syst. 10 (2002), 117-127. 10.1109/91.995115 | 
| Reference:
             | 
[8] Mendel, J. M., Liu, F., Zhai, D.: $\alpha$-plane representation for type-2 fuzzy sets: Theory and applications..IEEE Trans. Fuzzy Syst. 17 (2009), 1189-1207. 10.1109/TFUZZ.2009.2024411 | 
| Reference:
             | 
[9] Mizumoto, M., Tanaka, K.: Some properties of fuzzy sets of type 2..Inform. Control 31 (1976), 312-340. Zbl 0331.02042, MR 0449947, 10.1016/S0019-9958(76)80011-3 | 
| Reference:
             | 
[10] Starczewski, J.: Extended triangular norms on gaussian fuzzy sets..In: Proc. EUSFLAT-LFA 2005 (E. Montseny and P. Sobrevilla, eds.), 2005, pp. 872-877. | 
| Reference:
             | 
[11] Takáč, Z.: Intersection and union of type-2 fuzzy sets and connection to ($\alpha_1,\alpha_2$)-double cuts..In: Proc. EUSFLAT-LFA 2011 (S. Galichet, J. Montero and G. Mauris, eds.), 2011, pp. 1052-1059. Zbl 1254.03108 | 
| Reference:
             | 
[12] Wagner, C., Hagras, H.: zSlices-towards bridging the gap between interval and general type-2 fuzzy logic..In: Proc. IEEE FUZZ Conf, Hong Kong 2008, pp. 489-497. | 
| Reference:
             | 
[13] Zadeh, L. A.: The concept of a linguistic variable and its application to approximate reasoning - I..Inform. Sci. 8 (1975), 199-249. Zbl 0397.68071, MR 0386369, 10.1016/0020-0255(75)90036-5 | 
| . |