Previous |  Up |  Next

Article

Keywords:
Orlicz-Sobolev space; Mountain Pass Theorem; Palais-Smale sequence; Ekeland Variational Principle
Summary:
Let $\Omega \subset \mathbb R^n$, $n\geq 2$, be a bounded connected domain of the class $C^{1,\theta }$ for some $\theta \in (0,1]$. Applying the generalized Moser-Trudinger inequality without boundary condition, the Mountain Pass Theorem and the Ekeland Variational Principle, we prove the existence and multiplicity of nontrivial weak solutions to the problem $$ \displaylines { u\in W^1 L^{\Phi }(\Omega ), \quad -\operatorname {div}\Big (\Phi '(|\nabla u|)\frac {\nabla u}{|\nabla u|}\Big ) +V(x)\Phi '(|u|)\frac {u}{|u|}=f(x,u)+\mu h(x)\quad \text {in} \Omega ,\cr \frac {\partial u}{\partial {\bf n}}=0\quad \text {on} \partial \Omega ,\cr } $$ where $\Phi $ is a Young function such that the space $W^1 L^{\Phi }(\Omega )$ is embedded into exponential or multiple exponential Orlicz space, the nonlinearity $f(x,t)$ has the corresponding critical growth, $V(x)$ is a continuous potential, $h\in (L^{\Phi }(\Omega ))^*$ is a nontrivial continuous function, $\mu \geq 0$ is a small parameter and ${\bf n}$ denotes the outward unit normal to $\partial \Omega $.
References:
[1] Adimurthi: Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 17 393-413 (1990). MR 1079983 | Zbl 0732.35028
[2] Adimurthi: Positive solutions of the semilinear Dirichlet problem with critical growth in the unit disc in $\mathbb R^2$. Proc. Indian Acad. Sci., Math. Sci. 99 49-73 (1989). DOI 10.1007/BF02874647 | MR 1004638
[3] Adimurthi, Sandeep, K.: A singular Moser-Trudinger embedding and its applications. NoDEA, Nonlinear Differ. Equ. Appl. 13 585-603 (2007). DOI 10.1007/s00030-006-4025-9 | MR 2329019 | Zbl 1171.35367
[4] Ambrosetti, A., Rabinowitz, P. H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 349-381 (1973). DOI 10.1016/0022-1236(73)90051-7 | MR 0370183 | Zbl 0273.49063
[5] Brézis, H., Lieb, E. H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88 486-490 (1983). DOI 10.2307/2044999 | MR 0699419 | Zbl 0526.46037
[6] Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36 437-477 (1983). DOI 10.1002/cpa.3160360405 | MR 0709644 | Zbl 0541.35029
[7] Černý, R.: Concentration-compactness principle for embedding into multiple exponential spaces. Math. Inequal. Appl. 15 165-198 (2012). MR 2919441 | Zbl 1236.46027
[8] Černý, R.: Generalized $n$-Laplacian: quasilinear nonhomogenous problem with critical growth. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 3419-3439 (2011). DOI 10.1016/j.na.2011.03.002 | MR 2803070
[9] Černý, R.: Generalized Moser-Trudinger inequality for unbounded domains and its application. NoDEA, Nonlinear Differ. Equ. Appl. 19 575-608 (2012). DOI 10.1007/s00030-011-0143-0 | MR 2984597 | Zbl 1262.46025
[10] Černý, R.: On generalized Moser-Trudinger inequalities without boundary condition. Czech. Math. J. 62 743-785 (2012). DOI 10.1007/s10587-012-0044-3 | MR 2984633 | Zbl 1265.46047
[11] Černý, R.: On the Dirichlet problem for the generalized $n$-Laplacian: singular nonlinearity with the exponential and multiple exponential critical growth range. Math. Inequal. Appl. 16 255-277 (2013). MR 3060395 | Zbl 1273.35143
[12] Černý, R., Gurka, P., Hencl, S.: On the Dirichlet problem for the $n,\alpha$-Laplacian with the nonlinearity in the critical growth range. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 5189-5204 (2011). DOI 10.1016/j.na.2011.05.015 | MR 2810699 | Zbl 1225.35062
[13] Černý, R., Mašková, S.: A sharp form of an embedding into multiple exponential spaces. Czech. Math. J. 60 751-782 (2010). DOI 10.1007/s10587-010-0048-9 | MR 2672414 | Zbl 1224.46064
[14] Figueiredo, D. G. de, Miyagaki, O. H., Ruf, B.: Elliptic equations in $\mathbb R^2$ with nonlinearities in the critical growth range. Calc. Var. Partial Differ. Equ. 3 139-153 (1995). DOI 10.1007/BF01205003 | MR 1386960
[15] 'O, J. M. do: $N$-Laplacian equations in $\mathbb R^N$ with critical growth. Abstr. Appl. Anal. 2 301-315 (1997). DOI 10.1155/S1085337597000419 | MR 1704875
[16] Ó, J. M. do, Medeiros, E., Severo, U.: On a quasilinear nonhomogeneous elliptic equation with critical growth in $\mathbb R^N$. J. Differ. Equations 246 1363-1386 (2009). DOI 10.1016/j.jde.2008.11.020 | MR 2488689
[17] Edmunds, D. E., Gurka, P., Opic, B.: Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces. Indiana Univ. Math. J. 44 19-43 (1995). DOI 10.1512/iumj.1995.44.1977 | MR 1336431 | Zbl 0826.47021
[18] Edmunds, D. E., Gurka, P., Opic, B.: Double exponential integrability, Bessel potentials and embedding theorems. Stud. Math. 115 151-181 (1995). MR 1347439 | Zbl 0829.47024
[19] Edmunds, D. E., Gurka, P., Opic, B.: On embeddings of logarithmic Bessel potential spaces. J. Funct. Anal. 146 116-150 (1997). DOI 10.1006/jfan.1996.3037 | MR 1446377 | Zbl 0934.46036
[20] Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47 324-353 (1974). DOI 10.1016/0022-247X(74)90025-0 | MR 0346619 | Zbl 0286.49015
[21] Fusco, N., Lions, P. L., Sbordone, C.: Sobolev imbedding theorems in borderline cases. Proc. Am. Math. Soc. 124 561-565 (1996). DOI 10.1090/S0002-9939-96-03136-X | MR 1301025 | Zbl 0841.46023
[22] Hencl, S.: A sharp form of an embedding into exponential and double exponential spaces. J. Funct. Anal. 204 (2003), 196-227. DOI 10.1016/S0022-1236(02)00172-6 | MR 2004749 | Zbl 1034.46031
[23] Lions, P.-L.: On the existence of positive solutions of semilinear elliptic equations. SIAM Rev. 24 (1982), 441-467. DOI 10.1137/1024101 | MR 0678562 | Zbl 0511.35033
[24] Moser, J.: A sharp form of an inequality by Trudinger. Indiana Univ. Math. J. 20 1077-1092 (1971). DOI 10.1512/iumj.1971.20.20101 | MR 0301504 | Zbl 0213.13001
[25] Panda, R.: On semilinear Neumann problems with critical growth for the $n$-Laplacian. Nonlinear Anal., Theory Methods Appl. 26 1347-1366 (1996). DOI 10.1016/0362-546X(94)00360-T | MR 1377667 | Zbl 0854.35045
[26] Rana, I. K.: An Introduction to Measure and Integration. 2nd ed. Graduate Studies in Mathematics 45. American Mathematical Society Providence (2002). MR 1934675
[27] Tonkes, E.: Solutions to a perturbed critical semilinear equation concerning the $N$-Laplacian in $\mathbb R^N$. Commentat. Math. Univ. Carol. 40 679-699 (1999). MR 1756545
[28] Trudinger, N. S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17 473-483 (1967). MR 0216286 | Zbl 0163.36402
Partner of
EuDML logo