[2] Bögelein, V., Duzaar, F., Mingione, G.: 
Degenerate problems with irregular obstacles. J. Reine Angew. Math. 650 (2011), 107-160. 
MR 2770559 | 
Zbl 1218.35088[7] Capogna, L., Danielli, D., Pauls, S. D., Tyson, J. T.: 
An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem. Progress in Mathematics 259. Birkhäuser Basel (2007). 
MR 2312336[8] Choe, H. J.: 
A regularity theory for a general class of quasilinear elliptic partial differential equations and obstacle problems. Arch. Ration. Mech. Anal. 114 (1991), 383-394. 
DOI 10.1007/BF00376141 | 
MR 1100802 | 
Zbl 0733.35024[12] Danielli, D., Garofalo, N., Petrosyan, A.: 
The sub-elliptic obstacle problem: $\mathcal{C}^{1, \alpha}$ regularity of the free boundary in Carnot groups of step two. Adv. Math. 211 (2007), 485-516. 
DOI 10.1016/j.aim.2006.08.008 | 
MR 2323535[13] DiBenedetto, E., Manfredi, J.: 
On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems. Am. J. Math. 115 (1993), 1107-1134. 
DOI 10.2307/2375066 | 
MR 1246185 | 
Zbl 0805.35037[17] Domokos, A., Manfredi, J. J.: 
$C^{1,\alpha}$-regularity for $p$-harmonic functions in the Heisenberg group for $p$ near $2$. The $p$-harmonic Equation and Recent Advances in Analysis. Proceedings of the 3rd Prairie Analysis Seminar, Manhattan, KS, USA, October 17-18, 2003 Contemporary Mathematics 370 American Mathematical Society, Providence P. Poggi-Corradini (2005), 17-23. 
MR 2126699 | 
Zbl 1073.22004[20] Fuchs, M., Mingione, G.: 
Full $C^{1,a}$-regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth. Manuscr. Math. 102 (2000), 227-250. 
DOI 10.1007/s002291020227 | 
MR 1771942[22] Gromov, M.: 
Carnot-Carathéodory spaces seen from within. Sub-Riemannian Geometry. Proceedings of the Satellite Meeting of the 1st European Congress of Mathematics `Journées Nonholonomes: Géométrie Sous-Riemannienne, Théorie du Contrôle, Robotique', Paris, France, June 30--July 1, 1992 A. Bellaï che et al. Progress in Mathematics 144 Birkhauser, Basel (1996), 79-323. 
MR 1421823 | 
Zbl 0864.53025[23] Heinonen, J., Kilpeläinen, T., Martio, O.: 
Nonlinear potential theory of degenerate elliptic equations. Unabridged republication of the 1993 original. Dover Publications Mineola (2006). 
MR 2305115 | 
Zbl 1115.31001[26] Lewy, H.: 
An example of a smooth linear partial differential equation with solution. Ann. Math. 66 (1957), 155-158. 
DOI 10.2307/1970121 | 
MR 0088629[29] Marchi, S.: 
Regularity for the solutions of double obstacle problems involving nonlinear elliptic operators on the Heisenberg group. Matematiche 56 (2001), 109-127. 
MR 1997729 | 
Zbl 1048.35024[30] Mingione, G.: 
The Calderón-Zygmund theory for elliptic problems with measure data. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 6 (2007), 195-261. 
MR 2352517 | 
Zbl 1178.35168[34] Rodrigues, J.-F.: 
Obstacle Problems in Mathematical Physics. North-Holland Mathematics Studies 134. North-Holland Amsterdam (1987). 
MR 0880369[35] Stampacchia, G.: 
Formes bilineaires coercitives sur les ensembles convexes. C. R. Acad. Sci., Paris 258 (1964), 4413-4416 French. 
MR 0166591 | 
Zbl 0124.06401[36] Stein, E. M.: 
Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. With the Assistance of Timothy S. Murphy. Princeton Mathematical Series 43. Princeton University Press Princeton (1993). 
MR 1232192[37] Sussmann, H. J.: 
Geometry and optimal control. Mathematical Control Theory. With a Foreword by Sanjoy K. Mitter. Dedicated to Roger Ware Brockett on the occasion of his 60th birthday J. B. Baillieul et al. Springer (1998), 140-198. 
MR 1661472 | 
Zbl 1067.49500