Full entry |
PDF
(0.3 MB)
Feedback

unary algebra; congruence lattice; intransitive G-Sets; M-Sets; representations of lattices

References:

[1] Burris S., Sankappanavar H.P.: **A Course in Universal Algebra**. Graduate Texts in Mathematics, 78, Springer, New York-Berlin, 1981; http://www.math.uwaterloo.ca/snburris/htdocs/ualg.html DOI 10.1007/978-1-4613-8130-3 | MR 0648287 | Zbl 0478.08001

[2] Grätzer G., Schmidt E.T.: **Characterizations of congruence lattices of abstract algebras**. Acta Sci. Math. (Szeged) 24 (1963), 34–59. MR 0151406 | Zbl 0117.26101

[3] McKenzie R.N., McNulty G., Taylor W.: **Algebras, Lattices, Varieties, Vol. 1**. The Wadsworth & Brooks/Cole Mathematics Series, Monterey, CA, 1987. MR 0883644

[4] Pálfy P.P., Pudlák P.: **Congruence lattices of finite algebras and intervals in subgroup lattices in finite groups**. Algebra Universalis 11 (1980), 22–27. DOI 10.1007/BF02483080 | MR 0593011

[5] Radeleczki S.: **The automorphism group of unary algebras**. Math. Pannon. 7 (1996), no. 2, 253–271. MR 1414133 | Zbl 0858.08002

[6] Seif S.: **Congruence lattices of algebras–the signed labeling**. Proc. Amer. Math. Soc. 124 (1996), no. 5, 1361–1370. DOI 10.1090/S0002-9939-96-03102-4 | MR 1301526

[7] Seif S.: **Congruence semimodularity and transitivity-forcing lattices via transitivity labeling**. manuscript.

[8] Seif S.: **Two-orbit M-Sets and primitive monoids**. manuscript.

[9] Seif S.: **The probability that a finite lattice has an intransitive G-Set representation**. manuscript.

[10] Tůma J.: **Intervals in subgroup lattices of infinite groups**. J. Algebra 125 (1989), no. 2, 367–399. DOI 10.1016/0021-8693(89)90171-3 | MR 1018952 | Zbl 0679.20024

[11] Vernikov B.M.: **On congruence lattices of $G$-sets**. Comment. Math. Univ. Carolinae 38 (1997), no. 3, 601–611.