[1] Ainsworth, M., Oden, J. T.: 
A Posteriori Error Estimation in Finite Element Analysis. Wiley and Sons, New York 2000. 
MR 1885308 | 
Zbl 1008.65076[2] Babuška, I., Strouboulis, T.: 
The Finite Element Method and its Reliability. Oxford University Press, New York 2001. 
MR 1857191[3] Bangerth, W., Rannacher, R.: 
Adaptive Finite Element Methods for Differential Equations. Birkhäuser, Berlin 2003. 
MR 1960405 | 
Zbl 1020.65058[4] Braess, D., Hoppe, R. H. W., Schöberl, J.: 
A posteriori estimators for obstacle problems by the hypercircle method. Comp. Visual. Sci. 11 (2008), 351-362. 
DOI 10.1007/s00791-008-0104-2 | 
MR 2425501[5] Brezi, F., Hager, W. W., Raviart, P. A.: 
Error estimates for the finite element solution of variational inequalities I. Numer. Math. 28 (1977), 431-443. 
DOI 10.1007/BF01404345 | 
MR 0448949[6] Buss, H., Repin, S.: 
A posteriori error estimates for boundary value problems with obstacles. In: Proc. 3rd European Conference on Numerical Mathematics and Advanced Applications, Jÿvaskylä 1999, World Scientific 2000, pp. 162-170. 
MR 1936177 | 
Zbl 0968.65041[7] Carstensen, C., Merdon, C.: 
A posteriori error estimator completition for conforming obstacle problems. Numer. Methods Partial Differential Equations 29 (2013), 667-�692. 
DOI 10.1002/num.21728 | 
MR 3022903[8] Dostál, Z.: 
Optimal Quadratic Programming Algorithms. Springer 2009. 
MR 2492434[10] Fuchs, M., Repin, S.: 
A Posteriori Error Estimates for the Approximations of the Stresses in the Hencky Plasticity Problem. Numer. Funct. Anal. Optim. 32 (2011), 610-640. 
DOI 10.1080/01630563.2011.571802 | 
MR 2795532[11] Glowinski, R., Lions, J. L., Trémolieres, R.: 
Numerical Analysis of Variational Inequalities. North-Holland 1981. 
MR 0635927 | 
Zbl 0463.65046[12] Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J.: 
Solution of Variational Inequalities in Mechanics. Applied Mathematical Sciences 66, Springer-Verlag, New York 1988. 
MR 0952855 | 
Zbl 0654.73019[13] Kikuchi, N., Oden, J. T.: 
Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM 1995. 
MR 0961258 | 
Zbl 0685.73002[14] Kraus, J., Tomar, S.: 
Algebraic multilevel iteration method for lowest-order Raviart-Thomas space and applications. Internat. J. Numer. Meth. Engrg. 86 (2011), 1175-1196. 
DOI 10.1002/nme.3103 | 
MR 2817075 | 
Zbl 1235.65130[16] Neittaanmäki, P., Repin, S.: 
Reliable Methods for Computer Simulation (Error Control and a Posteriori Estimates). Elsevier 2004. 
MR 2095603 | 
Zbl 1076.65093[18] Repin, S.: 
A posteriori error estimation for nonlinear variational problems by duality theory. Zapiski Nauchn. Semin. POMI 243 (1997), 201-214. 
MR 1629741 | 
Zbl 0904.65064[19] Repin, S.: 
Estimates of deviations from exact solutions of elliptic variational inequalities. Zapiski Nauchn. Semin. POMI 271 (2000), 188-203. 
MR 1810617 | 
Zbl 1118.35320[20] Repin, S.: 
A Posteriori Estimates for Partial Differential Equations. Walter de Gruyter, Berlin 2008. 
MR 2458008 | 
Zbl 1162.65001[23] Ulbrich, M.: 
Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. SIAM 2011. 
MR 2839219 | 
Zbl 1235.49001[24] Valdman, J.: 
Minimization of functional majorant in a posteriori error analysis based on $H(div)$ multigrid-preconditioned CG method. Advances in Numerical Analysis (2009). 
MR 2739760 | 
Zbl 1200.65095