[1] Cerone, P., Dragomir, S.S.: 
Some bounds in terms of $\Delta $-seminorms for Ostrowski-Grüss type inequalities. Soochow J. Math., 27, 4, 2001, 423-434,  
MR 1867810 | 
Zbl 0996.26018[4] Cerone, P., Dragomir, S.S., Roumeliotis, J.: 
Grüss inequality in terms of $\Delta $-seminorms and applications. Integral Transforms Spec. Funct., 14, 3, 2003, 205-216,  
DOI 10.1080/1065246031000074353 | 
MR 1982817 | 
Zbl 1036.26018[5] Chebyshev, P.L.: Sur les expressions approximatives des intègrals dèfinis par les outres prises entre les même limites. Proc. Math. Soc. Charkov, 2, 1882, 93-98, 
[7] Grüss, G.: 
Über das Maximum des absoluten Betrages von $\frac{1}{b-a}\int_{a}^{b}f(x)g(x)\,{\rm d}x-\frac{1}{(b-a)^{2}}\int_{a}^{b}f(x)\,{\rm d}x\int_{a}^{b}g(x)\,{\rm d}x$. Math. Z., 39, 1935, 215-226,  
MR 1545499[8] Li, X., Mohapatra, R.N., Rodriguez, R.S.: 
Grüss-type inequalities. J. Math. Anal. Appl., 267, 2, 2002, 434-443,  
DOI 10.1006/jmaa.2001.7565 | 
MR 1888014 | 
Zbl 1007.26016[9] Lupaş, A.: 
The best constant in an integral inequality. Mathematica (Cluj, Romania), 15 (38), 2, 1973, 219-222,  
MR 0360960 | 
Zbl 0285.26014[10] Mercer, A.McD.: 
An improvement of the Grüss inequality. J. Inequal. Pure Appl. Math., 6, 4, 2005, Article 93, 4 pp. (electronic)..  
MR 2178274 | 
Zbl 1084.26014[11] Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: 
Classical and New Inequalities in Analysis. 1993, Kluwer Academic Publishers, Dordrecht/Boston/London,  
MR 1220224[13] Pachpatte, B.G.: 
On Grüss like integral inequalities via Pompeiu's mean value theorem. J. Inequal. Pure Appl. Math., 6, 3, 2005, Article 82, 5 pp..  
MR 2164323 | 
Zbl 1088.26017