Article
Keywords:
imaginary abelian number field; relative class number; determinant; class number formula
Summary:
We give a new formula for the relative class number of an imaginary abelian number field $K$ by means of determinant with elements being integers of a cyclotomic field generated by the values of an odd Dirichlet character associated to $K$. We prove it by a specialization of determinant formula of Hasse.
References:
                        
[1] Girstmair, K.: 
The relative class numbers of imaginary cyclic fields of degrees 4, 6, 8 and 10. Math. Comp., 61, 1993, 881-887,  
MR 1195428 | 
Zbl 0787.11046[2] Hasse, H.: 
Über die Klassenzahl abelscher Zahlkörper. 1952, Akademie-Verlag, Berlin, Reprinted with an introduction by J. Martinet, Springer Verlag, Berlin (1985).  
MR 0842666 | 
Zbl 0046.26003[4] Washington, L.C.: 
Introduction to Cyclotomic Fields, 2nd edition. 1997, Springer Verlag, Berlin,  
MR 1421575[5] Yamamura, K.: 
Bibliography on determinantal expressions of relative class numbers of imaginary abelian number fields. Number Theory. Dreaming in Dreams. Proceedings of the 5th China-Japan Seminar, 2010, 244-250, World Sci. Publ., Hackensack,  
MR 2798466 | 
Zbl 1202.11001