[1] Allen, S., Cahn, J.: 
A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 1084-1095 (1979). 
DOI 10.1016/0001-6160(79)90196-2[3] Beneš, M., Kimura, M., Pauš, P., Ševčovič, D., Tsujikawa, T., Yazaki, S.: 
Application of a curvature adjusted method in image segmentation. Bull. Inst. Math., Acad. Sin. (N.S.) 3 (2008), 509-523. 
MR 2502611 | 
Zbl 1170.53040[4] Beneš, M., Kratochvíl, J., Křišťan, J., Minárik, V., Pauš, P.: 
A parametric simulation method for discrete dislocation dynamics. European Phys. J. ST 177 177-192 (2009). 
DOI 10.1140/epjst/e2009-01174-7[5] Beneš, M., Yazaki, S., Kimura, M.: 
Computational studies of non-local anisotropic Allen-Cahn equation. Math. Bohem. 136 (2011), 429-437. 
MR 2985552 | 
Zbl 1249.35153[6] Cahn, J. W., Hilliard, J. E.: 
Free energy of a nonuniform system. III. Nucleation of a two-component incompressible fluid. J. Chem. Phys. 31 688-699 (1959). 
DOI 10.1063/1.1730447[7] Dolcetta, I. Capuzzo, Vita, S. Finzi, March, R.: 
Area-preserving curve-shortening flows: From phase separation to image processing. Interfaces Free Bound. 4 (2002), 325-343. 
MR 1935642[9] Esedo\={g}lu, S., Ruuth, S. J., Tsai, R.: 
Threshold dynamics for high order geometric motions. Interfaces Free Bound. 10 (2008), 263-282. 
MR 2453132 | 
Zbl 1157.65330[10] Gage, M.: 
On an area-preserving evolution equation for plane curves. Nonlinear Problems in Geometry, Proc. AMS Spec. Sess., Mobile/Ala. 1985 Contemp. Math. 51 American Mathematical Society, Providence (1986), 51-62 D. M. DeTurck. 
DOI 10.1090/conm/051/848933 | 
MR 0848933 | 
Zbl 0608.53002[12] Henry, M., Hilhorst, D., Mimura, M.: 
A reaction-diffusion approximation to an area preserving mean curvature flow coupled with a bulk equation. Discrete Contin. Dyn. Syst., Ser. S 4 (2011), 125-154. 
MR 2746398 | 
Zbl 1207.35189[14] Minárik, V., Beneš, M., Kratochvíl, J.: 
Simulation of dynamical interaction between dislocations and dipolar loops. J. Appl. Phys. 107 Article No. 061802, 13 pages (2010). 
DOI 10.1063/1.3340518[17] Ševčovič, D.: 
Qualitative and quantitative aspects of curvature driven flows of planar curves. Topics on Partial Differential Equations Jindřich Nečas Center for Mathematical Modeling Lecture Notes 2 Matfyzpress, Praha 55-119 (2007), P. Kaplický et al. 
MR 2856665