Previous |  Up |  Next

Article

Keywords:
discrete Mittag-Leffler function; fractional difference equation; asymptotics; backward $h$-Laplace transform
Summary:
The (modified) two-parametric Mittag-Leffler function plays an essential role in solving the so-called fractional differential equations. Its asymptotics is known (at least for a subset of its domain and special choices of the parameters). The aim of the paper is to introduce a discrete analogue of this function as a solution of a certain two-term linear fractional difference equation (involving both the Riemann-Liouville as well as the Caputo fractional $h$-difference operators) and describe its asymptotics. Here, we shall employ our recent results on stability and asymptotics of solutions to the mentioned equation.
References:
[1] Abdeljawad, T.: On delta and nabla Caputo fractional differences and dual identities. Discrete Dyn. Nat. Soc. 2013 (2013), Article No. 406910, 12 pages. MR 3081123
[2] Abdeljawad, T.: On Riemann and Caputo fractional differences. Comput. Math. Appl. 62 (2011), 1602-1611. DOI 10.1016/j.camwa.2011.03.036 | MR 2824747 | Zbl 1228.26008
[3] Abdeljawad, T., Jarad, F., Baleanu, D.: A semigroup-like property for discrete Mittag-Leffler functions. Adv. Difference Equ. (electronic only) 2012 (2012), Article No. 72, 7 pages. MR 2944466 | Zbl 1292.39001
[4] Atıcı, F. M., Eloe, P. W.: Linear systems of fractional nabla difference equations. Rocky Mt. J. Math. 41 (2011), 353-370. DOI 10.1216/RMJ-2011-41-2-353 | MR 2794443 | Zbl 1218.39003
[5] Atıcı, F. M., Eloe, P. W.: Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ., Special Issue I (electronic only) 2009 (2009), Article No. 3, 12 pages. MR 2558828 | Zbl 1189.39004
[6] Atıcı, F. M., Eloe, P. W.: Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 137 (2009), 981-989. DOI 10.1090/S0002-9939-08-09626-3 | MR 2457438 | Zbl 1166.39005
[7] Bohner, M., Guseinov, G. S.: The $h$-Laplace and $q$-Laplace transforms. J. Math. Anal. Appl. 365 (2010), 75-92. DOI 10.1016/j.jmaa.2009.09.061 | MR 2585078 | Zbl 1188.44008
[8] Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. An Introduction with Applications. Birkhäuser, Basel (2001). MR 1843232 | Zbl 0978.39001
[9] Čermák, J., Kisela, T., Nechvátal, L.: Stability regions for linear fractional differential systems and their discretizations. Appl. Math. Comput. 219 (2013), 7012-7022. DOI 10.1016/j.amc.2012.12.019 | MR 3027865 | Zbl 1288.34005
[10] Čermák, J., Kisela, T., Nechvátal, L.: Discrete Mittag-Leffler functions in linear fractional difference equations. Abstr. Appl. Anal. 2011 (2011), Article No. 565067, 21 pages. MR 2817254 | Zbl 1220.39010
[11] Čermák, J., Nechvátal, L.: On $(q,h)$-analogue of fractional calculus. J. Nonlinear Math. Phys. 17 (2010), 51-68. DOI 10.1142/S1402925110000593 | MR 2647460 | Zbl 1189.26006
[12] Díaz, R., Pariguan, E.: On hypergeometric functions and Pochhammer $k$-symbol. Divulg. Mat. 15 (2007), 179-192. MR 2422409 | Zbl 1163.33300
[13] Elaydi, S.: An Introduction to Difference Equations (3rd edition). Undergraduate Texts in Mathematics Springer, New York (2005). MR 2128146
[14] Gray, H. L., Zhang, N. F.: On a new definition of the fractional difference. Math. Comput. 50 (1988), 513-519. DOI 10.1090/S0025-5718-1988-0929549-2 | MR 0929549 | Zbl 0648.39002
[15] Matignon, D.: Stability results for fractional differential equations with applications to control processing. Computational Engineering in Systems and Application Multiconference 2 IMACS, IEEE-SMC, Lille, France, 1996 963-968.
[16] Miller, K. S., Ross, B.: Fractional difference calculus. Univalent Functions, Fractional Calculus, and Their Applications, Kōriyama, 1988 Ellis Horwood Ser. Math. Appl. Horwood, Chichester (1989), 139-152 H. M. Srivastava et al. MR 1199147 | Zbl 0693.39002
[17] Nagai, A.: Discrete Mittag-Leffler function and its applications. Sūrikaisekikenkyūsho Kōkyūroku 1302 (2003), 1-20 New developments in the research of integrable systems that are continuous, discrete and ultradiscrete, Japanese, Kyoto, 2002. MR 1986510
[18] Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering 198 Academic Press, San Diego (1999). MR 1658022 | Zbl 0924.34008
[19] Qian, D., Li, C., Agarwal, R. P., Wong, P. J. Y.: Stability analysis of fractional differential system with Riemann-Liouville derivative. Math. Comput. Modelling 52 (2010), 862-874. DOI 10.1016/j.mcm.2010.05.016 | MR 2661771 | Zbl 1202.34020
Partner of
EuDML logo