Previous |  Up |  Next


Title: Choquet-like integrals with respect to level-dependent capacities and $\varphi $-ordinal sums of aggregation function (English)
Author: Mesiar, Radko
Author: Smrek, Peter
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 3
Year: 2015
Pages: 420-432
Summary lang: English
Category: math
Summary: In this study we merge the concepts of Choquet-like integrals and the Choquet integral with respect to level dependent capacities. For finite spaces and piece-wise constant level-dependent capacities our approach can be represented as a $\varphi$-ordinal sum of Choquet-like integrals acting on subdomains of the considered scale, and thus it can be regarded as extension method. The approach is illustrated by several examples. (English)
Keyword: Choquet integral
Keyword: Choquet-like integral
Keyword: level-dependent capacity
Keyword: $\varphi $-ordinal sum of aggregation functions
MSC: 28E05
MSC: 28E10
idZBL: Zbl 06487088
idMR: MR3391677
DOI: 10.14736/kyb-2015-3-0420
Date available: 2015-09-01T09:10:02Z
Last updated: 2016-01-03
Stable URL:
Reference: [1] Choquet, G.: Theory of capacities..Annales de l'Institite Fourier 5 (1953-1954), 131-295. Zbl 0679.01011, MR 0080760, 10.5802/aif.53
Reference: [2] Denneberg, D.: Non-additive Measure and Integral..In: Theory and Decision Library. Series B: Mathematical and Statistical Methods 27. Kluwer Academic Publishers Group, Dordrecht 1994. Zbl 0968.28009, MR 1320048, 10.1007/978-94-017-2434-0
Reference: [3] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions..Cambridge University Press, Cambridge 2009. Zbl 1206.68299, MR 2538324, 10.1109/sisy.2008.4664901
Reference: [4] Greco, S., Matarazzo, B., Giove, S.: The Choquet integral with respect to a level dependent capacity..Fuzzy Sets and Systems 175 (2011), 1-35. Zbl 1218.28014, MR 2803409, 10.1016/j.fss.2011.03.012
Reference: [5] Mesiar, R.: Choquet-like integrals..J. Math. Anal. Appl. 194 (1995), 477-488. Zbl 0845.28010, MR 1345050, 10.1006/jmaa.1995.1312
Reference: [6] Mesiar, R., Baets, B. De: New construction methods for aggregation operators..In: Proc. IPMU'2000, Madrid, pp. 701-706.
Reference: [7] Pap, E., ed.: Handbook of Measure Theory. Vol. I, II..North-Holland, Amsterdam 2002. MR 1953489, 10.1016/b978-044450263-6/50000-2
Reference: [8] Pap, E.: An integral generated by a decomposable measure..Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20 (1990), 135-144. Zbl 0754.28002, MR 1158414
Reference: [9] Sander, W., Siedekum, J.: Multiplication, distributivity and fuzzy integral, I, II, III..Kybernetika 41 (2005) I: 397-422, II: 469-496, III: 497-518. MR 2181427
Reference: [10] Schmeidler, D.: Integral representation without additivity..Proc. Amer. Math. Soc. 97 (1986), 255-261. Zbl 0687.28008, MR 0835875, 10.1090/s0002-9939-1986-0835875-8
Reference: [11] Schmeidler, D.: Subjective probability and expected utility without additivity..Econometrica 57 (1989), 571-87. Zbl 0672.90011, MR 0999273, 10.2307/1911053
Reference: [12] Sugeno, M.: Theory of Fuzzy Integrals and its Applications..PhD Thesis, Tokyo Institute of Technology, 1974.
Reference: [13] Sugeno, M., Murofushi, T.: Pseudo-additive measures and integrals..J. Math. Anal. Appl. 122 (1987), 197-222. Zbl 0611.28010, MR 0874969, 10.1016/0022-247x(87)90354-4
Reference: [14] Vitali, G.: Sula definizione di integrale delle funzioni di una variabile..Ann. Mat. Pura Appl. 2 (1925), 111-121. English translation: On the definition of integral of functions of one variable. Rivista di Matematica per le Scienze Sociali 20 (1997), 159-168. MR 1553076, 10.1007/BF02409934
Reference: [15] Wang, Z., Klir, G. J.: Generalized Measure Theory..Springer, 2009. Zbl 1184.28002, MR 2453907, 10.1007/978-0-387-76852-6


Files Size Format View
Kybernetika_51-2015-3_4.pdf 300.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo