Previous |  Up |  Next


Title: On computations with causal compositional models (English)
Author: Bína, Vladislav
Author: Jiroušek, Radim
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 3
Year: 2015
Pages: 525-539
Summary lang: English
Category: math
Summary: The knowledge of causal relations provides a possibility to perform predictions and helps to decide about the most reasonable actions aiming at the desired objectives. Although the causal reasoning appears to be natural for the human thinking, most of the traditional statistical methods fail to address this issue. One of the well-known methodologies correctly representing the relations of cause and effect is Pearl's causality approach. The paper brings an alternative, purely algebraic methodology of causal compositional models. It presents the properties of operator of composition, on which a general methodology is based that makes it possible to evaluate the causal effects of some external action. The proposed methodology is applied to four illustrative examples. They illustrate that the effect of intervention can in some cases be evaluated even when the model contains latent (unobservable) variables. (English)
Keyword: causal model
Keyword: conditioning
Keyword: intervention
Keyword: extension
MSC: 62H99
MSC: 65C50
MSC: 68T30
MSC: 97K50
idZBL: Zbl 06487094
idMR: MR3391683
DOI: 10.14736/kyb-2015-3-0525
Date available: 2015-09-01T09:18:49Z
Last updated: 2016-01-03
Stable URL:
Reference: [1] Detwarasiti, A., Shachter, R. D.: Influence diagrams for team decision analysis..Decision Analysis 2 (2005), 4, 207-228. 10.1287/deca.1050.0047
Reference: [2] Hagmayer, Y., Sloman, S., Lagnado, D., Waldmann, M. R.: Causal reasoning through intervention..In: Causal Learning: Psychology, Philosophy, and Computation (A. Gopnik and L. Schulz, eds.), Oxford University Press 2007, pp. 86-101. 10.1093/acprof:oso/9780195176803.003.0007
Reference: [3] Jiroušek, R.: Foundations of compositional model theory..Int. J. Gen. Syst. 40 (2011), 6, 623-678. Zbl 1252.68285, MR 2817988, 10.1080/03081079.2011.562627
Reference: [4] Jiroušek, R.: On causal compositional models: Simple examples..In: Proc. 15th Int. Conf. on Inf. Processing and Management of Uncertainty - Part I. Springer 2014, pp. 517-526. 10.1007/978-3-319-08795-5_53
Reference: [5] Malvestuto, F. M.: Equivalence of compositional expressions and independence relations in compositional models..Kybernetika 50 (2014), 3, 322-362. MR 3245534, 10.14736/kyb-2014-3-0322
Reference: [6] Malvestuto, F. M.: Marginalization in models generated by compositional expressions..To appear in Kybernetika 51 (2015), 4. MR 3350569
Reference: [7] Pearl, J.: Causality: Models, Reasoning, and Inference..Cambridge University Press, NY 2009. Zbl 1188.68291, MR 2548166, 10.1017/cbo9780511803161
Reference: [8] Ryall, M., Bramson, A.: Inference and Intervention: Causal Models for Business Analysis..Routledge, NY 2013. 10.4324/9780203076835
Reference: [9] Shachter, R.: Evaluating influence diagrams..Oper. Res. 34 (1986), 6, 871-882. MR 0886655, 10.1287/opre.34.6.871
Reference: [10] Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction and Search..Springer Lecture Notes in Statistics, New York 1993. Zbl 0981.62001, MR 1227558, 10.1007/978-1-4612-2748-9
Reference: [11] Tucci, R. R.: Introduction to Judea Pearl's Do-Calculus..arXiv:1305.5506v1 [cs.AI] (2013).


Files Size Format View
Kybernetika_51-2015-3_10.pdf 334.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo