Previous |  Up |  Next

Article

Keywords:
semicommutative ring; $P$-semicommutative ring; prime radical of a ring
Summary:
In this paper, we introduce a new kind of rings that behave like semicommutative rings, but satisfy yet more known results. This kind of rings is called $P$-semicommutative. We prove that a ring $R$ is $P$-semicommutative if and only if $R[x]$ is $P$-semicommutative if and only if $R[x, x^{-1}]$ is $P$-semicommutative. Also, if $R[[x]]$ is $P$-semicommutative, then $R$ is $P$-semicommutative. The converse holds provided that $P(R)$ is nilpotent and $R$ is power serieswise Armendariz. For each positive integer $n$, $R$ is $P$-semicommutative if and only if $T_n(R)$ is $P$-semicommutative. For a ring $R$ of bounded index $2$ and a central nilpotent element $s$, $R$ is $P$-semicommutative if and only if $K_s(R)$ is $P$-semicommutative. If $T$ is the ring of a Morita context $(A,B,M,N,\psi,\varphi)$ with zero pairings, then $T$ is $P$-semicommutative if and only if $A$ and $B$ are $P$-semicommutative. Many classes of such rings are constructed as well. We also show that the notions of clean rings and exchange rings coincide for $P$-semicommutative rings.
References:
[1] Akalan E., Vas L.: Classes of almost clean rings. Algebr. Represent. Theory 16 (2013), no. 3, 843–857. DOI 10.1007/s10468-012-9334-6 | MR 3049674 | Zbl 1275.16026
[2] Chen H.: Rings Related to Stable Range Conditions. Series in Algebra 11, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. MR 2752904 | Zbl 1245.16002
[3] Chen H.: On strongly nil clean matrices. Comm. Algebra 41 (2013), no. 3, 1074–1086. DOI 10.1080/00927872.2011.637265 | MR 3037180 | Zbl 1286.16025
[4] Chen H.: On $2\times 2$ strongly clean matrices. Bull. Korean Math. Soc. 50 (2013), no. 1, 125–134. DOI 10.4134/BKMS.2013.50.1.125 | MR 3029536 | Zbl 1263.15029
[5] Chen H.: Exchange ideals with all idempotents central. Algebra Colloq. 20 (2013), no. 4, 643–652. DOI 10.1142/S1005386713000618 | MR 3116793 | Zbl 1292.16008
[6] Chen W.: On nil-semicommutative rings. Thai J. Math. 9 (2011), 39–47. MR 2833751 | Zbl 1264.16040
[7] Hirano Y., Huynh D.V., Park J.K.: On rings whose prime radical contains all nilpotent elements of index two. Arch. Math. (Basel) 66 (1996), 360–365. DOI 10.1007/BF01781553 | MR 1383899 | Zbl 0862.16011
[8] Huh C., Kim H.K., Lee D.S., Lee Y.: Prime radicals of formal power series rings. Bull. Korean Math. Soc. 38 (2001), 623–633. MR 1865820 | Zbl 1001.16011
[9] Huh C., Lee Y., Smoktunowicz A.: Armendariz rings and semicommutative rings. Comm. Algebra 30 (2002), no. 2, 751–761. DOI 10.1081/AGB-120013179 | MR 1883022 | Zbl 1023.16005
[10] Hungerford T.W.: Algebra. Springer, New York, 1980. MR 0600654 | Zbl 0442.00002
[11] Kim N.K., Lee Y.: Extensions of reversible rings. J. Pure Appl. Algebra 185 (2003), 207–223. DOI 10.1016/S0022-4049(03)00109-9 | MR 2006427 | Zbl 1040.16021
[12] Liang L., Wang L., Liu Z.: On a generalization of semicommutative rings. Taiwanese J. Math. 11 (2007), 1359–1368. MR 2368654 | Zbl 1142.16019
[13] McCoy N.H.: The Theory of Rings. Chelsea Publishing Company, New York, 1973. MR 0393090 | Zbl 0273.16001
[14] Mohammadi R., Moussavi A., Zahiri M.: On nil-semicommutative rings. Int. Electron. J. Algebra 11 (2012), 20–37. MR 2876884 | Zbl 1253.16024
[15] Nicholson W.K.: Lifting idempotents and exchange rings. Trans. Amer. Math. Soc. 229 (1977), 269–278. DOI 10.1090/S0002-9947-1977-0439876-2 | MR 0439876 | Zbl 0352.16006
[16] Ozen T., Agayev N., Harmanci A.: On a class of semicommutative rings. Kyungpook Math. J. 51 (2011), 283–291. DOI 10.5666/KMJ.2011.51.3.283 | MR 2843017 | Zbl 1232.16025
[17] Qu Y., Wei J.: Some notes on nil-semicommutative rings. Turk. J. Math. 38 (2014), 212–224. DOI 10.3906/mat-1202-44 | MR 3164786
Partner of
EuDML logo