[4] Drápal A., Griggs T.S., Kozlik A.R.: 
Basics of DTS quasigroups: Algebra, geometry and enumeration. J. Algebra Appl. 14 (2015), 1550089. 
MR 3338085 | 
Zbl 1312.05025[5] Drápal A., Kozlik A.R., Griggs T.S.: Flexible Latin directed triple systems. Utilitas Math.(to appear).
[6] Ge G.: 
Group divisible designs. Handbook of Combinatorial Designs, second edition, ed. C.J. Colbourn and J.H. Dinitz, Chapman and Hall/CRC Press, Boca Raton, FL, 2007, pp. 255–260. 
MR 2246267[8] Ge G., Rees R.S.: 
On group-divisible designs with block size four and group-type $6^u m^1$. Discrete Math. 279 (2004), 247–265. 
MR 2059993[9] Ge G., Rees R., Zhu L.: 
Group-divisible designs with block size four and group-type $g^u m^1$ with $m$ as large or as small as possible. J. Combin. Theory Ser. A 98 (2002), 357–376. 
DOI 10.1006/jcta.2001.3246 | 
MR 1899631[11] Kozlik A.R.: Cyclic and rotational Latin hybrid triple systems. submitted.
[12] McCune W.: Mace$4$ Reference Manual and Guide. Tech. Memo ANL/MCS-TM-264, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, August 2003.