| Title: | On computation of minimal free resolutions over solvable polynomial algebras (English) | 
| Author: | Li, Huishi | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 56 | 
| Issue: | 4 | 
| Year: | 2015 | 
| Pages: | 447-503 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | Let $A=K[a_1,\ldots ,a_n]$ be a (noncommutative) solvable polynomial algebra over a field $K$ in the sense of A. Kandri-Rody and V. Weispfenning [Non-commutative Gröbner bases in algebras of solvable type, J. Symbolic Comput. 9 (1990), 1--26]. This paper presents a comprehensive study on the computation of minimal free resolutions of modules over $A$ in the following two cases: (1) $A=\bigoplus_{p\in\mathbb{N}}A_p$ is an $\mathbb{N}$-graded algebra with the degree-0 homogeneous part $A_0=K$; (2) $A$ is an $\mathbb{N}$-filtered algebra with the filtration $\{F_pA\}_{p\in\mathbb{N}}$ determined by a  positive-degree function on $A$. (English) | 
| Keyword: | solvable polynomial algebra | 
| Keyword: | Gröbner basis | 
| Keyword: | minimal free resolution | 
| MSC: | 16W70 | 
| MSC: | 16Z05 | 
| idZBL: | Zbl 06537719 | 
| idMR: | MR3434224 | 
| DOI: | 10.14712/1213-7243.2015.141 | 
| . | 
| Date available: | 2015-12-17T11:48:38Z | 
| Last updated: | 2018-01-04 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/144754 | 
| . | 
| Reference: | [AL1] Apel J., Lassner W.: An extension of Buchberger's algorithm and calculations in enveloping fields of Lie algebras.J. Symbolic Comput. 6 (1988), 361–370. Zbl 0663.68044, MR 0988423, 10.1016/S0747-7171(88)80053-1 | 
| Reference: | [AL2] Adams W.W., Loustaunau P.: An Introduction to Gröbner Bases.Graduate Studies in Mathematics, 3, American Mathematical Society, Providence, RI, 1994. Zbl 0803.13015, MR 1287608, 10.1090/gsm/003/02 | 
| Reference: | [Bu1] Buchberger B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen polynomideal.Ph.D. Thesis, University of Innsbruck, 1965. Zbl 1245.13020 | 
| Reference: | [Bu2] Buchberger B.: Gröbner bases: An algorithmic method in polynomial ideal theory.in Multidimensional Systems Theory (Bose, N.K., ed.), Reidel Dordrecht, 1985, pp. 184–232. Zbl 0587.13009 | 
| Reference: | [BW] Becker T., Weispfenning V.: Gröbner Bases.Springer, New York, 1993. Zbl 0772.13010, MR 1213453 | 
| Reference: | [CDNR] Capani A., De Dominicis G., Niesi G., Robbiano L.: Computing minimal finite free resolutions.J. Pure Appl. Algebra 117/118 (1997), 105–117. Zbl 0906.13006, MR 1457835, 10.1016/S0022-4049(97)00007-8 | 
| Reference: | [DGPS] Decker W., Greuel G.-M., Pfister G., Schönemann H.: Singular $3$-$1$-$3$ --- A computer algebra system for polynomial computations.http://www.singular.uni-kl.de(2011). | 
| Reference: | [Eis] Eisenbud D.: Commutative Algebra with a View Toward to Algebraic Geometry.Graduate Texts in Mathematics, 150, Springer, New York, 1995. MR 1322960 | 
| Reference: | [Fau] Faugére J.-C.: A new efficient algorithm for computing Gröobner bases without reduction to zero $(F5)$.in Proceedings ISSAC'02, ACM Press, New York, 2002, pp. 75–82. MR 2035234 | 
| Reference: | [Fröb] Fröberg R.: An Introduction to Gröbner Bases.Wiley, Chichester, 1997. Zbl 0997.13500, MR 1483316 | 
| Reference: | [Gal] Galligo A.: Some algorithmic questions on ideals of differential operators.Proc. EUROCAL'85, Lecture Notes in Comput. Sci., 204, Springer, Berlin, 1985, pp. 413–421. Zbl 0634.16001, MR 0826576 | 
| Reference: | [Gol] Golod E.S.: Standard bases and homology.in Some Current Trends in Algebra (Varna, 1986), Lecture Notes in Mathematics, 1352, Springer, Berlin, 1988, pp. 88–95. Zbl 0892.16024, MR 0981820, 10.1007/BFb0082019 | 
| Reference: | [Hu] Humphreys J.E.: Introduction to Lie Algebras and Representation Theory.Springer, New York-Berlin, 1972. Zbl 0447.17002, MR 0323842 | 
| Reference: | [Kr1] Krähmer U.: Notes on Koszul algebras.2010, http://www.maths.gla.ac.uk/ ukraehmer/connected.pdf. | 
| Reference: | [Kr2] Kredel H.: Solvable Polynomial Rings.Shaker-Verlag, 1993. Zbl 0790.16027 | 
| Reference: | [KP] Kredel H., Pesch M.: MAS, modula-$2$ algebra system.1998, http://krum.rz.uni-mannheim.de/mas/. | 
| Reference: | [KR1] Kreuzer M., Robbiano L.: Computational Commutative Algebra $1$.Springer, Berlin, 2000. MR 1790326, 10.1007/978-3-540-70628-1 | 
| Reference: | [KR2] Kreuzer M., Robbiano L.: Computational Commutative Algebra $2$.Springer, Berlin, 2005. MR 2159476 | 
| Reference: | [K-RW] Kandri-Rody A., Weispfenning V.: Non-commutative Gröbner bases in algebras of solvable type.J. Symbolic Comput. 9 (1990), 1–26. Zbl 0715.16010, MR 1044911, 10.1016/S0747-7171(08)80003-X | 
| Reference: | [Lev] Levandovskyy V.: Non-commutative computer algebra for polynomial algebra: Gröbner bases, applications and implementation.Ph.D. Thesis, TU Kaiserslautern, 2005. | 
| Reference: | [Li1] Li H.: Noncommutative Gröbner Bases and Filtered-Graded Transfer.Lecture Note in Mathematics, 1795, Springer, Berlin, 2002. MR 1947291, 10.1007/b84211 | 
| Reference: | [Li2] Li H.: Gröbner Bases in Ring Theory.World Scientific Publishing Co., Hackensack, NJ, 2012. MR 2894019 | 
| Reference: | [Li3] Li H.: On monoid graded local rings.J. Pure Appl. Algebra 216 (2012), 2697–2708. MR 2943750, 10.1016/j.jpaa.2012.03.031 | 
| Reference: | [Li4] Li H.: A note on solvable polynomial algebras.Comput. Sci. J. Moldova 22 (2014), no. 1, 99–109; arXiv:1212.5988 [math.RA]. MR 3243257 | 
| Reference: | [LS] Li H., Su C.: On (de)homogenized Gröbner bases.Journal of Algebra, Number Theory: Advances and Applications 3 (2010), no. 1, 35–70. | 
| Reference: | [LVO] Li H., Van Oystaeyen F.: Zariskian Filtrations.$K$-Monograph in Mathematics, 2, Kluwer Academic Publishers, Dordrecht, 1996. MR 1420862 | 
| Reference: | [LW] Li H., Wu Y.: Filtered-graded transfer of Gröbner basis computation in solvable polynomial algebras.Comm. Algebra 28 (2000), no. 1, 15–32. MR 1738569, 10.1080/00927870008826825 | 
| Reference: | [Sch] Schreyer F.O.: Die Berechnung von Syzygien mit dem verallgemeinerten Weierstrasschen Divisionsatz.Diplomarbeit, Hamburg, 1980. | 
| Reference: | [SWMZ] Sun Y. et al.: A signature-based algorithm for computing Gröbner bases in solvable polynomial algebras.in Proc. ISSAC'12, ACM Press, New York, 2012, pp. 351–358. Zbl 1308.68193, MR 3206324 | 
| . |