| Title: | Some results on $(n,d)$-injective modules, $(n,d)$-flat modules and $n$-coherent rings (English) | 
| Author: | Zhu, Zhanmin | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 56 | 
| Issue: | 4 | 
| Year: | 2015 | 
| Pages: | 505-513 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | Let $n,d$ be two non-negative integers. A left $R$-module $M$ is called $(n,d)$-injective, if ${\rm Ext}^{d+1}(N, M)=0$ for every $n$-presented left $R$-module $N$. A right $R$-module $V$ is called $(n,d)$-flat, if ${\rm Tor}_{d+1}(V, N)=0$ for every $n$-presented left $R$-module $N$. A left $R$-module $M$ is called weakly $n$-$FP$-injective, if ${\rm Ext}^n(N, M)=0$ for every $(n+1)$-presented left $R$-module  $N$. A right $R$-module $V$ is called weakly $n$-flat, if ${\rm Tor}_n(V, N)=0$ for every $(n+1)$-presented left $R$-module $N$. In this paper, we give some characterizations and properties of $(n,d)$-injective modules and $(n,d)$-flat modules in the cases of $n\geq d+1$ or $n> d+1$. Using the concepts of weakly $n$-$FP$-injectivity and weakly $n$-flatness of modules, we give some new characterizations of left $n$-coherent rings. (English) | 
| Keyword: | $(n,d)$-injective modules | 
| Keyword: | $(n,d)$-flat modules | 
| Keyword: | $n$-coherent rings | 
| MSC: | 16D40 | 
| MSC: | 16D50 | 
| MSC: | 16P70 | 
| idZBL: | Zbl 06537720 | 
| idMR: | MR3434225 | 
| DOI: | 10.14712/1213-7243.2015.133 | 
| . | 
| Date available: | 2015-12-17T11:49:33Z | 
| Last updated: | 2018-01-04 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/144755 | 
| . | 
| Reference: | [1] Chen J.L., Ding N.Q.: On $n$-coherent rings.Comm. Algebra 24 (1996), 3211–3216. Zbl 0877.16010, MR 1402554, 10.1080/00927879608825742 | 
| Reference: | [2] D.L. Costa: Parameterizing families of non-noetherian rings.Comm. Algebra 22 (1994), no. 10, 3997–4011. Zbl 0814.13010, MR 1280104, 10.1080/00927879408825061 | 
| Reference: | [3] Enochs E.E., Jenda O.M.G.: Relative Homological Algebra.Walter de Gruyter, Berlin-New York, 2000. Zbl 0952.13001, MR 1753146 | 
| Reference: | [4] Holm H., Jørgensen P.: Covers, precovers, and purity.Illinois J. Math. 52 (2008), 691–703. Zbl 1189.16007, MR 2524661 | 
| Reference: | [5] Megibben C.: Absolutely pure modules.Proc. Amer.Math. Soc. 26 (1970), 561–566. Zbl 0216.33803, MR 0294409, 10.1090/S0002-9939-1970-0294409-8 | 
| Reference: | [6] Rada J., Saorin M.: Rings characterized by (pre)envelopes and (pre)covers of their modules.Comm. Algebra 26 (1998), 899–912. Zbl 0908.16003, MR 1606190, 10.1080/00927879808826172 | 
| Reference: | [7] Stenström B.: Coherent rings and FP-injective modules.J. London Math. Soc. 2 (1970), 323–329. MR 0258888, 10.1112/jlms/s2-2.2.323 | 
| Reference: | [8] Zhou D.X.: On $n$-coherent rings and $(n,d)$-rings.Comm. Algebra 32 (2004), 2425–2441. Zbl 1089.16001, MR 2100480, 10.1081/AGB-120037230 | 
| Reference: | [9] Zhu Z.: On $n$-coherent rings, $n$-hereditary rings and $n$-regular rings.Bull. Iranian Math. Soc. 37 (2011), 251–267. Zbl 1277.16007, MR 2915464 | 
| . |