| Title:
             | 
An ordered structure of pseudo-BCI-algebras (English) | 
| Author:
             | 
Chajda, Ivan | 
| Author:
             | 
Länger, Helmut | 
| Language:
             | 
English | 
| Journal:
             | 
Mathematica Bohemica | 
| ISSN:
             | 
0862-7959 (print) | 
| ISSN:
             | 
2464-7136 (online) | 
| Volume:
             | 
141 | 
| Issue:
             | 
1 | 
| Year:
             | 
2016 | 
| Pages:
             | 
91-98 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
In Chajda's paper (2014), to an arbitrary BCI-algebra the author assigned an ordered structure with one binary operation which possesses certain antitone mappings. In the present paper, we show that a similar construction can be done also for pseudo-BCI-algebras, but the resulting structure should have two binary operations and a set of couples of antitone mappings which are in a certain sense mutually inverse. The motivation for this approach is the well-known fact that every commutative BCK-algebra is in fact a join-semilattice and we try to obtain a similar result also for the non-commutative case and for pseudo-BCI-algebras which generalize BCK-algebras, see e.g. Imai and Iséki (1966) and Iséki (1966). (English) | 
| Keyword:
             | 
pseudo-BCI-algebra | 
| Keyword:
             | 
directoid | 
| Keyword:
             | 
antitone mapping | 
| Keyword:
             | 
pseudo-BCI-structure | 
| MSC:
             | 
03G25 | 
| MSC:
             | 
06F35 | 
| idZBL:
             | 
Zbl 06562161 | 
| idMR:
             | 
MR3475140 | 
| DOI:
             | 
10.21136/MB.2016.7 | 
| . | 
| Date available:
             | 
2016-03-17T19:48:48Z | 
| Last updated:
             | 
2020-07-01 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/144854 | 
| . | 
| Reference:
             | 
[1] Chajda, I.: A structure of BCI-algebras.Int. J. Theor. Phys. 53 (2014), 3391-3396. Zbl 1302.81032, MR 3253801, 10.1007/s10773-013-1739-4 | 
| Reference:
             | 
[2] Chajda, I., Länger, H.: On the structure of pseudo-BCK algebras.(to appear) in J. Multiple-Valued Logic Soft Computing. | 
| Reference:
             | 
[3] Chajda, I., L{ä}nger, H.: Directoids. An Algebraic Approach to Ordered Sets.Research and Exposition in Mathematics 32 Heldermann, Lemgo (2011). Zbl 1254.06002, MR 2850357 | 
| Reference:
             | 
[4] Ciungu, L. C.: Non-commutative Multiple-Valued Logic Algebras.Springer Monographs in Mathematics Springer, Cham (2014). Zbl 1279.03003, MR 3112745 | 
| Reference:
             | 
[5] Dudek, W. A., Jun, Y. B.: Pseudo-BCI algebras.East Asian Math. J. 24 (2008), 187-190. Zbl 1149.06010 | 
| Reference:
             | 
[6] Dymek, G.: On two classes of pseudo-BCI-algebras.Discuss. Math., Gen. Algebra Appl. 31 (2011), 217-229. Zbl 1258.06014, MR 2953913, 10.7151/dmgaa.1184 | 
| Reference:
             | 
[7] Dymek, G., Kozanecka-Dymek, A.: Pseudo-BCI-logic.Bull. Sect. Log., Univ. Łódź, Dep. Log. 42 (2013), 33-42. Zbl 1287.03058, MR 3077651 | 
| Reference:
             | 
[8] Imai, Y., Iséki, K.: On axiom systems of propositional calculi. XIV.Proc. Japan Acad. 42 (1966), 19-22. Zbl 0156.24812, MR 0195704 | 
| Reference:
             | 
[9] Is{é}ki, K.: An algebra related with a propositional calculus.Proc. Japan Acad. 42 (1966), 26-29. Zbl 0207.29304, MR 0202571 | 
| . |