Article
Keywords:
Lie rings; commutative associative rings
Summary:
Let $K$ be an associative and commutative ring with $1$, $k$ a subring of $K$ such that $1\in k$, $n\geq 2$ an integer. The paper describes subrings of the general linear Lie ring $gl_{n} ( K )$ that contain the Lie ring of all traceless matrices over $k$.
References:
                        
[1] Bashkirov E.L.: 
Matrix Lie rings that contain a one-dimensional Lie algebra of semi-simple matrices. J. Prime Res. Math. 3 (2007), 111–119. 
MR 2397770[2] Bashkirov E.L.: 
Matrix Lie rings that contain an abelian subring. J. Prime Res. Math. 4 (2008), 113–117. 
MR 2490007[3] Wang D.Y.: 
Extensions of Lie algebras according to the extension of fields. J. Math. Res. Exposition 25 (2005), no. 3, 543–547. 
MR 2163737[4] Zhao Y.X., Wang D.Y., Wang Ch.H.: 
Intermediate Lie algebras between the symplectic algebras and the general linear Lie algebras over commutative rings. J. Math. (Wuhan) 29 (2009), no. 3, 247-252. 
MR 2541763[5] Vavilov N.A.: 
Intermediate subgroups in Chevalley groups. Groups of Lie Type and Their Geometries (Como 1993), London Math. Soc. Lecture Note Ser., 207, Cambridge Univ. Press, Cambridge, 1995, pp. 233–280. 
MR 1320525