Previous |  Up |  Next


Boolean Prime Ideal Theorem; weak forms of the axiom of choice; ultrafilters
We show that given infinite sets $X,Y$ and a function $f:X\rightarrow Y$ which is onto and $n$-to-one for some $n\in \mathbb{N}$, the preimage of any ultrafilter $\mathcal{F}$ of $Y$ under $f$ extends to an ultrafilter. We prove that the latter result is, in some sense, the best possible by constructing a permutation model $\mathcal{M}$ with a set of atoms $A$ and a finite-to-one onto function $f:A\rightarrow \omega $ such that for each free ultrafilter of $\omega $ its preimage under $f$ does not extend to an ultrafilter. In addition, we show that in $\mathcal{M}$ there exists an ultrafilter compact pseudometric space $\mathbf{X}$ such that its metric reflection $\mathbf{X}^{\ast }$ is not ultrafilter compact.
[1] Herrlich H., Howard P., Keremedis K.: On extensions of countable filterbases to ultrafilters and ultrafilter compactness. submitted manuscript.
[2] Herrlich H., Keremedis K.: On the metric reflection of a pseudometric space in $\mathbf{ZF}$. Comment. Math. Univ. Carolin. 56 (2015), 77–88. MR 3311579
[3] Hall E., Keremedis K., Tachtsis E.: The existence of free ultrafilters on $\omega $ does not imply the extension of filters on $\omega $ to ultrafilters. Math. Logic Quart. 59 (2013), 158–267. DOI 10.1002/malq.201100092 | MR 3100753
[4] Howard P., Rubin J. E.: Consequences of the Axiom of Choice. Math. Surveys and Monographs, 59, American Mathematical Society, Providence, R.I., 1998. DOI 10.1090/surv/059 | MR 1637107 | Zbl 0947.03001
[5] Jech T.: The Axiom of Choice. North-Holland Publishing Co., Amsterdam-London, 1973. MR 0396271 | Zbl 0259.02052
[6] Keremedis K.: Tychonoff products of two-element sets and some weakenings of the Boolean Prime Ideal Theorem. Bull. Pol. Acad. Sci. Math. 53 (2005), no. 4, 349–359. DOI 10.4064/ba53-4-1 | MR 2214925 | Zbl 1112.03044
Partner of
EuDML logo