Previous |  Up |  Next


nonlinear systems; continuous observers; sampled output; delayed measurements
In this paper, we consider two kinds of sampled-data observer design for a class of nonlinear systems. The system output is sampled and transmitted under two kinds of truncations. Firstly, we present definitions of the truncations and the globally uniformly ultimately bounded observer, respectively. Then, two kinds of observers are proposed by using the delayed measurements with these two truncations, respectively. The observers are hybrid in essence. For the first kind of observers, by constructing a Lyapunov-Krasovskii functional, sufficient conditions of globally uniformly ultimately bounded of the estimation errors are derived, and the maximum allowable sampling period and the maximum delay are also given. For the second ones, sufficient conditions are also given to ensure that the estimation errors are globally uniformly ultimately bounded. Finally, an example is provided to illustrate the design methods.
[1] Ahmed-Ali, T., Lamnabhi-Lagarrigue, F.: High gain observer design for some networked control systems. IEEE Trans. Automat. Control 57 (2012), 995-1000. DOI 10.1109/tac.2011.2168049 | MR 2952330
[2] Ahmed-Ali, T., Assche, V. Van, Massieu, J., Dorleans, P.: Continuous-discrete observer for state affine systems with sampled and delayed measurements. IEEE Trans. Automat. Control 58 (2013), 1085-1091. DOI 10.1109/tac.2012.2225555 | MR 3038816
[3] Ahmed-Ali, T., Karafyllis, I., Lamnabhi-Lagarrigue, F.: Global exponential sampled-data observers for nonlinear systems with delayed measurements. Syst. Control Lett. 62 (2013), 539-549. DOI 10.1016/j.sysconle.2013.03.008 | MR 3068156 | Zbl 1277.93051
[4] Andrieu, V., Praly, L., Astolfi, A.: High gain observers with updated high-gain and homogeneous correction terms. Automatica 45 (2009), 422-428. DOI 10.1016/j.automatica.2008.07.015 | MR 2527338
[5] Arcak, M., Nešić, D.: A framework for nonlinear sampled-data observer design via approximate discrete-time models and emulation. Automatica 40 (2004), 1931-1938. DOI 10.1016/j.automatica.2004.06.004 | MR 2156001 | Zbl 1059.93081
[6] Biyik, E., Arcak, M.: A hybrid redesign of newton observers in the absence of an exact discrete-time model. Automatica 55 (2006), 429-436. DOI 10.1016/j.sysconle.2005.09.005 | MR 2216751 | Zbl 1129.93330
[7] Gauthier, J., Hammouri, H., Othman, S.: A simple observer for nonlinear systems applications to bioreactors. IEEE Trans. Automat. Control 37 (1992), 875-880. DOI 10.1109/9.256352 | MR 1164571 | Zbl 0775.93020
[8] Karafyllis, I., Kravaris, C.: From continuous time design to sampled-data design of observers. IEEE Trans. Automat. Control 54 (2009), 2169-2174. DOI 10.1109/tac.2009.2024390 | MR 2567944
[9] Li, Y., Shen, Y., Xia, X.: Global finite-time observers for a class of nonlinear systems. Kybernetika 49 (2013), 319-340. MR 3085399 | Zbl 1264.93029
[10] Li, Y., Xia, X., Shen, Y.: A high-gain-based global finite-time nonlinear observer. Int. J. Control 86 (2013), 759-767. DOI 10.1080/00207179.2012.760045 | MR 3054465 | Zbl 1278.93060
[11] Liu, Y., Wang, Z., Liu, X.: On global exponential stability of generalized stochastic netural networks with mixed time-delays. Neurocomputing 70 (2006), 314-326. DOI 10.1016/j.neucom.2006.01.031
[12] Nadri, H., Hammouri, H., Mota, R.: Observer design for uniformly observable systems with sampled measurements. IEEE Trans. Automat. Control 58 (2013), 757-762. DOI 10.1109/tac.2012.2212517 | MR 3029473
[13] Praly, L.: Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate. IEEE Trans. Automat. Control 48 (2003), 1103-1108. DOI 10.1109/tac.2003.812819 | MR 1986287
[14] Shen, Y., Huang, Y.: Uniformly observable and globally lipschitzian nonlinear systems admit global finite-time observers. IEEE Trans. Automat. Control 54 (2009), 995-1006. DOI 10.1109/tac.2009.2029298 | MR 2571925
[15] Shen, Y., Xia, X.: Semi-global finite-time observers for nonlinear systems. Automatica 44 (2008), 3152-3156. DOI 10.1016/j.automatica.2008.05.015 | MR 2531419 | Zbl 1153.93332
[16] Assche, V. Van, Ahmed-Ali, T., Ham, C., Lamnabhi-Lagarrigue, F.: High gain observer design for nonlinear systems with time varying delayed measurements. In: 18th IFAC World Congress, Milan 2011, pp. 692-696. DOI 10.3182/20110828-6-it-1002.02421
[17] Zhang, D., Shen, Y., Shen, Y.: Continuous observer design for nonlinear systems based on sampled output measurements. In: 33rd Chinese Control Conference, Nanjing 2014, pp. 3909-3914. DOI 10.1109/chicc.2014.6895591
[18] Zhang, D., Shen, Y., Xia, X.: Continuous observer design for nonlinear systems with sampled and delayed output measurements. In: 19th IFAC World Congress, Cape Town 2014, pp. 269-274. DOI 10.3182/20140824-6-za-1003.00819
Partner of
EuDML logo