Previous |  Up |  Next


linear systems; Hurwitz stability; convex approximation
A problem of inner convex approximation of a stability domain for continuous-time linear systems is addressed in the paper. A constructive procedure for generating stable cones in the polynomial coefficient space is explained. The main idea is based on a construction of so-called Routh stable line segments (half-lines) starting from a given stable point. These lines (Routh rays) represent edges of the corresponding Routh subcones that form (possibly after truncation) a polyhedral (truncated) Routh cone. An algorithm for approximating a stability domain by the Routh cone is presented.
[1] Ackermann, J., Kaesbauer, D.: Stable polyhedra in parameter space. Automatica 39 (2003), 937-943. DOI 10.1016/s0005-1098(03)00034-7 | MR 2138367 | Zbl 1022.93016
[2] Artemchuk, I., Nurges, Ü., Belikov, J.: Robust pole assignment via Routh rays of polynomials. In: American Control Conference, Boston 2016, pp. 7031-7036.
[3] Artemchuk, I., Nurges, Ü., Belikov, J., Kaparin, V.: Stable cones of polynomials via Routh rays. In: 20th International Conference on Process Control, Štrbské Pleso 2015, pp. 255-260. DOI 10.1109/pc.2015.7169972
[4] Bhattacharyya, S. P., Chapellat, H., Keel, L. H.: Robust Control: The Parametric Approach. Prentice Hall, Upper Saddle River, New Jersy 1995. Zbl 0838.93008
[5] Calafiore, G., ElGhaoui, L.: Ellipsoidal bounds for uncertain linear equations and dynamical systems. Automatica 40 (2004), 773-787. DOI 10.1016/j.automatica.2004.01.001 | MR 2152184
[6] Chapellat, H., Mansour, M., Bhattacharyya, S. P.: Elementary proofs of some classical stability criteria. Trans. Ed. 33 (1990), 232-239. DOI 10.1109/13.57067
[7] Gantmacher, F. R.: The Theory of Matrices. Chelsea Publishing Company, New York 1959. DOI 10.1126/science.131.3408.1216-a | MR 0107649 | Zbl 0927.15002
[8] Greiner, R.: Necessary conditions for Schur-stability of interval polynomials. Trans. Automat. Control 49 (2004), 740-744. DOI 10.1109/tac.2004.825963 | MR 2057807
[9] Henrion, D., Peaucelle, D., Arzelier, D., Šebek, M.: Ellipsoidal approximation of the stability domain of a polynomial. Trans. Automat. Control 48 (2003), 2255-2259. DOI 10.1109/tac.2003.820161 | MR 2027255
[10] Hinrichsen, D., Kharitonov, V. L.: Stability of polynomials with conic uncertainty. Math. Control Signals Systems 8 (1995), 97-117. DOI 10.1007/bf01210203 | MR 1371080 | Zbl 0856.93077
[11] Jetto, L.: Strong stabilization over polytopes. Trans. Automat. Control 44 (1999), 1211-1216. DOI 10.1109/9.769376 | MR 1689136 | Zbl 0955.93025
[12] Kharitonov, V. L.: Asymptotic stability of an equilibrium position of a family of systems of linear differential equations. Differ. Equations 14 (1979), 1483-1485. MR 0516709 | Zbl 0409.34043
[13] Nise, N. S.: Control Systems Engineering. John Wiley and Sons, Jefferson City 2010.
[14] Nurges, Ü.: New stability conditions via reflection coefficients of polynomials. Trans. Automat. Control 50 (2005), 1354-1360. DOI 10.1109/tac.2005.854614 | MR 2164434
[15] Nurges, Ü., Avanessov, S.: Fixed-order stabilising controller design by a mixed randomised/deterministic method. Int. J. Control 88 (2015), 335-346. DOI 10.1080/00207179.2014.953208 | MR 3293574 | Zbl 1328.93228
[16] Nurges, Ü., Artemchuk, I., Belikov, J.: Generation of stable polytopes of Hurwitz polynomials via Routh parameters. In: 53rd IEEE Conference on Decision and Control, Los Angeles 2014, pp. 2390-2395. DOI 10.1109/cdc.2014.7039753
[17] Parmar, G., Mukherjee, S., Prasad, R.: System reduction using factor division algorithm and eigen spectrum analysis. Appl. Math. Model. 31 (2007), 2542-2552. DOI 10.1016/j.apm.2006.10.004 | Zbl 1118.93028
[18] Rahman, Q. I., Schmeisser, G.: Analytic Theory of Polynomials: Critical Points, Zeros and Extremal Properties. Oxford University Press, London 2002. MR 1954841
[19] Rantzer, A.: Stability conditions for polytopes of polynomials. Trans. Autom. Control 37 (1992), 79-89. DOI 10.1109/9.109640 | MR 1139617 | Zbl 0747.93064
[20] Shcherbakov, P., Dabbene, F.: On the Generation of Random Stable Polynomials. Eur. J. Control 17 (2011), 145-159. DOI 10.3166/ejc.17.145-159 | MR 2839112 | Zbl 1227.65008
[21] Tsoi, A. C.: Inverse Routh-Hurwitz array solution to the inverse stability problem. Electron. Lett. 15 (1979), 575-576. DOI 10.1049/el:19790413
[22] Verriest, E. I., Michiels, W.: Inverse Routh table construction and stability of delay equations. Systems Control Lett. 55 (2006), 711-718. DOI 10.1016/j.sysconle.2006.02.002 | MR 2245443 | Zbl 1100.93040
[23] Zadeh, L. A., Desoer, C. A.: Linear System Theory: The State Space Approach. MacGraw-Hill, New York 1963. Zbl 1153.93302
Partner of
EuDML logo