Previous |  Up |  Next

Article

Keywords:
perturbed Laplacian matrix; Fiedler vector; algebraic connectivity; graph partitioning
Summary:
The perturbed Laplacian matrix of a graph $G$ is defined as $L^{\mkern -15muD}=D-A$, where $D$ is any diagonal matrix and $A$ is a weighted adjacency matrix of $G$. We develop a Fiedler-like theory for this matrix, leading to results that are of the same type as those obtained with the algebraic connectivity of a graph. We show a monotonicity theorem for the harmonic eigenfunction corresponding to the second smallest eigenvalue of the perturbed Laplacian matrix over the points of articulation of a graph. Furthermore, we use the notion of Perron component for the perturbed Laplacian matrix of a graph and show how its second smallest eigenvalue can be characterized using this definition.
References:
[1] Bapat, R. B., Kirkland, S. J., Pati, S.: The perturbed Laplacian matrix of a graph. Linear Multilinear Algebra 49 (2001), 219-242. DOI 10.1080/03081080108818697 | MR 1888190 | Zbl 0984.05056
[2] Butler, S.: Eigenvalues and Structures of Graphs. PhD Disssertation, University of California, San Diego (2008). MR 2711548
[3] Cavers, M.: The Normalized Laplacian Matrix and General Randic Index of Graphs. PhD Dissertation, University of Regina, 2010. MR 3078627
[4] Chung, F. R. K.: Spectral Graph Theory. Regional Conference Series in Mathematics 92 American Mathematical Society, Providence (1997). MR 1421568 | Zbl 0867.05046
[5] Chung, F. R. K., Richardson, R. M.: Weighted Laplacians and the sigma function of a graph. Proc. of an AMS-IMS-SIAM joint summer research conf. on Quantum Graphs and Their Applications, Snowbird, 2005 B. Berkolaiko et al. Contemporary Mathematics 415 (2006), 93-107. DOI 10.1090/conm/415/07862 | MR 2277610 | Zbl 1106.05058
[6] Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czech. Math. J. 25 (1975), 619-633. DOI 10.21136/CMJ.1975.101357 | MR 0387321 | Zbl 0437.15004
[7] Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23 (1973), 298-305. DOI 10.21136/CMJ.1973.101168 | MR 0318007 | Zbl 0265.05119
[8] Kirkland, S., Fallat, S.: Perron components and algebraic connectivity for weighted graphs. Linear Multilinear Algebra 44 (1998), 131-148. DOI 10.1080/03081089808818554 | MR 1674228 | Zbl 0926.05026
[9] Kirkland, S., Neumann, M., Shader, B. L.: Characteristic vertices of weighted trees via Perron values. Linear Multilinear Algebra 40 (1996), 311-325. DOI 10.1080/03081089608818448 | MR 1384650 | Zbl 0866.05041
[10] Li, H.-H., Li, J.-S., Fan, Y.-Z.: The effect on the second smallest eigenvalue of the normalized Laplacian of a graph by grafting edges. Linear Multilinear Algebra 56 (2008), 627-638. DOI 10.1080/03081080601143090 | MR 2457689 | Zbl 1159.05317
[11] Merris, R.: Characteristic vertices of trees. 22 (1987), Linear Multilinear Algebra 115-131. DOI 10.1080/03081088708817827 | MR 0936566 | Zbl 0636.05021
[12] Nikiforov, V.: The influence of Miroslav Fiedler on spectral graph theory. Linear Algebra Appl. 439 (2013), 818-821. MR 3061737 | Zbl 1282.05145
Partner of
EuDML logo