[3] Alon, N., Coja-Oghlan, A., Hàn, H., Kang, M., Rödl, V., Schacht, M.: 
Quasi-randomness and algorithmic regularity for graphs with general degree distributions. SIAM J. Comput. 39 (2010), 2336-2362. 
DOI 10.1137/070709529 | 
MR 2644348 | 
Zbl 1227.05225[5] Alon, N., Spencer, J. H.: 
The Probabilistic Method. Wiley-Interscience Series in Discrete Mathematics and Optimization John Wiley & Sons, Hoboken (2008). 
MR 2437651 | 
Zbl 1148.05001[11] Conlon, D., Zhao, Y.: Quasirandom Cayley graphs. Available at ArXiv: 1603.03025 [math.CO].
[13] Donath, W. E., Hoffman, A. J.: Algorithms for partitioning of graphs and computer logic based on eigenvectors of connection matrices. (1972), IBM Techn. Disclosure Bull. 15 938-944.
[17] Gowers, W. T.: Personal communication. 
[18] Hall, K. M.: 
R-dimensional quadratic placement algorithm. (1970), Management Science Series A (Theory) 17 219-229. 
Zbl 0203.52503[19] Kohayakawa, Y., Rödl, V.: 
Regular pairs in sparse random graphs I. Random Struct. Algorithms 22 (2003), 359-434. 
MR 1980964 | 
Zbl 1022.05076[22] Lovász, L.: 
Combinatorial Problems and Exercises. AMS Chelsea Publishing, Providence (2007). 
MR 2321240 | 
Zbl 1120.05001[27] Spielman, D.: 
Spectral graph theory. Combinatorial Scientific Computing Chapman & Hall/CRC Comput. Sci. Ser. CRC Press, Boca Raton, FL (2012), 495-524. 
DOI 10.1201/b11644-19 | 
MR 2952760[28] Spielman, D. A., Teng, S.-H: 
Spectral partitioning works: planar graphs and finite element meshes. Linear Algebra Appl. 421 (2007), 284-305. 
MR 2294342 | 
Zbl 1122.05062[30] Thomason, A.: 
Pseudo-random graphs. Random graphs '85 Ann. Discrete Math. 33 North-Holland, Amsterdam (1987), 307-331. 
MR 0930498 | 
Zbl 0672.05068[31] Thomason, A.: 
Random graphs, strongly regular graphs and pseudo-random graphs. Surveys in Combinatorics 1987 London Math. Soc. Lecture Note Ser. 123 Cambridge Univ. Press, Cambridge (1987), 173-195. 
MR 0905280 | 
Zbl 0672.05068