Previous |  Up |  Next

Article

Keywords:
group of automorphisms; monomorphism; Lie algebra; Witt algebra; Virasoro algebra; automorphism; locally nilpotent derivation
Summary:
Let $L_n=K[x_1^{\pm 1} , \ldots , x_n^{\pm 1}]$ be a Laurent polynomial algebra over a field $K$ of characteristic zero, $W_n:= {\rm Der}_K(L_n)$ the Lie algebra of $K$-derivations of the algebra $L_n$, the so-called Witt Lie algebra, and let ${\rm Vir}$ be the Virasoro Lie algebra which is a $1$-dimensional central extension of the Witt Lie algebra. The Lie algebras $W_n$ and ${\rm Vir}$ are infinite dimensional Lie algebras. We prove that the following isomorphisms of the groups of Lie algebra automorphisms hold: ${\rm Aut}_{{\rm Lie}} ({\rm Vir}) \simeq {\rm Aut}_{{\rm Lie}} (W_1) \simeq \{\pm 1\} \ltimes K^*$, and give a short proof that ${\rm Aut}_{{\rm Lie}} (W_n) \simeq {\rm Aut_{K-{\rm alg}}} (L_n)\simeq {\rm GL}_n(\mathbb {Z}) \ltimes K^{*n}$.
References:
[1] Bavula, V. V.: Every monomorphism of the Lie algebra of triangular polynomial derivations is an automorphism. C. R., Math., Acad. Sci. Paris 350 (2012), 553-556. DOI 10.1016/j.crma.2012.06.001 | MR 2956141 | Zbl 1264.17014
[2] Bavula, V. V.: Lie algebras of triangular polynomial derivations and an isomorphism criterion for their Lie factor algebras. Izv. Math. 77 (2013), 1067-1104. DOI 10.1070/IM2013v077n06ABEH002670 | MR 3184106 | Zbl 1286.17022
[3] Bavula, V. V.: The groups of automorphisms of the Lie algebras of triangular polynomial derivations. J. Pure Appl. Algebra 218 (2014), 829-851. DOI 10.1016/j.jpaa.2013.10.004 | MR 3149637 | Zbl 1281.17019
[4] Bavula, V. V.: The group of automorphisms of the Lie algebra of derivations of a polynomial algebra. Algebra Appl. 16 (2017), 175-183 DOI: http://dx.doi.org/10.1142/S0219498817500888 DOI 10.1142/S0219498817500888 | MR 3634093
[5] Djoković, D. Ž., Zhao, K.: Derivations, isomorphisms, and second cohomology of generalized Witt algebras. Trans. Am. Math. Soc. 350 (1998), 643-664. DOI 10.1090/S0002-9947-98-01786-3 | MR 1390977 | Zbl 0952.17015
[6] Grabowski, J.: Isomorphisms and ideals of the Lie algebras of vector fields. Invent. Math. 50 (1978), 13-33. DOI 10.1007/BF01406466 | MR 0516602 | Zbl 0378.57010
[7] Grabowski, J., Poncin, N.: Automorphisms of quantum and classical Poisson algebras. Compos. Math. 140 (2004), 511-527. DOI 10.1112/S0010437X0300006X | MR 2027202 | Zbl 1044.17013
[8] Osborn, J. M.: Automorphisms of the Lie algebras $W^*$ in characteristic $0$. Can. J. Math. 49 (1997), 119-132. DOI 10.4153/CJM-1997-006-5 | MR 1437203 | Zbl 0891.17018
[9] Rudakov, A. N.: Subalgebras and automorphisms of Lie algebras of Cartan type. Funct. Anal. Appl. 20 (1986), 72-73. DOI 10.1007/BF01077325 | MR 0831060 | Zbl 0594.17015
[10] Shanks, M. E., Pursell, L. E.: The Lie algebra of a smooth manifold. Proc. Am. Math. Soc. 5 (1954), 468-472. DOI 10.1090/S0002-9939-1954-0064764-3 | MR 0064764 | Zbl 0055.42105
Partner of
EuDML logo