Previous |  Up |  Next

Article

Keywords:
boundedness; Calderón-Zygmund singular integral operator; para-product; spaces of homogeneous type
Summary:
We obtain the boundedness of Calderón-Zygmund singular integral operators $T$ of non-convolution type on Hardy spaces $H^p(\mathcal X)$ for $ 1/{(1+\epsilon )}<p\le 1$, where ${\mathcal X}$ is a space of homogeneous type in the sense of Coifman and Weiss (1971), and $\epsilon $ is the regularity exponent of the kernel of the singular integral operator $T$. Our approach relies on the discrete Littlewood-Paley-Stein theory and discrete Calderón's identity. The crucial feature of our proof is to avoid atomic decomposition and molecular theory in contrast to what was used in the literature.
References:
[1] Christ, M.: A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral. Colloq. Math. 60/61 (1990), 601-628. MR 1096400 | Zbl 0758.42009
[2] Coifman, R. R., Weiss, G.: Analyse harmonique non-commutative sur certains espaces homogènes. Etude de certaines intégrales singulières. Lecture Notes in Mathematics 242, Springer, Berlin French (1971). DOI 10.1007/BFb0058946 | MR 0499948 | Zbl 0224.43006
[3] Coifman, R. R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83 (1977), 569-645. DOI 10.1090/S0002-9904-1977-14325-5 | MR 0447954 | Zbl 0358.30023
[4] David, G., Journé, J.-L., Semmes, S.: Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation. Rev. Mat. Iberoam. 1 (1985), 1-56. DOI 10.4171/RMI/17 | MR 0850408 | Zbl 0604.42014
[5] Deng, D., Han, Y.: Harmonic Analysis on Spaces of Homogeneous Type. Lecture Notes in Mathematics 1966, Springer, Berlin (2009). DOI 10.1007/978-3-540-88745-4 | MR 2467074 | Zbl 1158.43002
[6] Fefferman, C., Stein, E. M.: $H^p$ spaces of several variables. Acta Math. 129 (1972), 137-193. DOI 10.1007/BF02392215 | MR 0447953 | Zbl 0257.46078
[7] Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93 (1990), 34-170. DOI 10.1016/0022-1236(90)90137-A | MR 1070037 | Zbl 0716.46031
[8] Han, Y.: Calderón-type reproducing formula and the $Tb$ theorem. Rev. Mat. Iberoam. 10 (1994), 51-91. DOI 10.4171/RMI/145 | MR 1271757 | Zbl 0797.42009
[9] Han, Y.: Discrete Calderón-type reproducing formula. Acta Math. Sin., Engl. Ser. 16 (2000), 277-294. DOI 10.1007/s101140050021 | MR 1778708 | Zbl 0978.42010
[10] Han, Y., Sawyer, E. T.: Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces. Mem. Am. Math. Soc. 110 (1994), no. 530, 126 pages. DOI 10.1090/memo/0530 | MR 1214968 | Zbl 0806.42013
[11] Macías, R. A., Segovia, C.: Lipschitz functions on spaces of homogeneous type. Adv. Math. 33 (1979), 257-270. DOI 10.1016/0001-8708(79)90012-4 | MR 0546295 | Zbl 0431.46018
[12] Meyer, Y., Coifman, R.: Wavelets: Calderón-Zygmund and Multilinear Operators. Cambridge Studies in Advanced Mathematics 48, Cambridge University Press, Cambridge (1997). MR 1456993 | Zbl 0916.42023
[13] Sawyer, E., Wheeden, R. L.: Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces. Am. J. Math. 114 (1992), 813-874. DOI 10.2307/2374799 | MR 1175693 | Zbl 0783.42011
Partner of
EuDML logo