Previous |  Up |  Next


Title: Boundedness of para-product operators on spaces of homogeneous type (English)
Author: Xiao, Yayuan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 1
Year: 2017
Pages: 235-252
Summary lang: English
Category: math
Summary: We obtain the boundedness of Calderón-Zygmund singular integral operators $T$ of non-convolution type on Hardy spaces $H^p(\mathcal X)$ for $ 1/{(1+\epsilon )}<p\le 1$, where ${\mathcal X}$ is a space of homogeneous type in the sense of Coifman and Weiss (1971), and $\epsilon $ is the regularity exponent of the kernel of the singular integral operator $T$. Our approach relies on the discrete Littlewood-Paley-Stein theory and discrete Calderón's identity. The crucial feature of our proof is to avoid atomic decomposition and molecular theory in contrast to what was used in the literature. (English)
Keyword: boundedness
Keyword: Calderón-Zygmund singular integral operator
Keyword: para-product
Keyword: spaces of homogeneous type
MSC: 42B25
MSC: 42B30
idZBL: Zbl 06738515
idMR: MR3633009
DOI: 10.21136/CMJ.2017.0536-15
Date available: 2017-03-13T12:10:32Z
Last updated: 2020-01-05
Stable URL:
Reference: [1] Christ, M.: A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral.Colloq. Math. 60/61 (1990), 601-628. Zbl 0758.42009, MR 1096400
Reference: [2] Coifman, R. R., Weiss, G.: Analyse harmonique non-commutative sur certains espaces homogènes. Etude de certaines intégrales singulières.Lecture Notes in Mathematics 242, Springer, Berlin French (1971). Zbl 0224.43006, MR 0499948, 10.1007/BFb0058946
Reference: [3] Coifman, R. R., Weiss, G.: Extensions of Hardy spaces and their use in analysis.Bull. Am. Math. Soc. 83 (1977), 569-645. Zbl 0358.30023, MR 0447954, 10.1090/S0002-9904-1977-14325-5
Reference: [4] David, G., Journé, J.-L., Semmes, S.: Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation.Rev. Mat. Iberoam. 1 (1985), 1-56. Zbl 0604.42014, MR 0850408, 10.4171/RMI/17
Reference: [5] Deng, D., Han, Y.: Harmonic Analysis on Spaces of Homogeneous Type.Lecture Notes in Mathematics 1966, Springer, Berlin (2009). Zbl 1158.43002, MR 2467074, 10.1007/978-3-540-88745-4
Reference: [6] Fefferman, C., Stein, E. M.: $H^p$ spaces of several variables.Acta Math. 129 (1972), 137-193. Zbl 0257.46078, MR 0447953, 10.1007/BF02392215
Reference: [7] Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces.J. Funct. Anal. 93 (1990), 34-170. Zbl 0716.46031, MR 1070037, 10.1016/0022-1236(90)90137-A
Reference: [8] Han, Y.: Calderón-type reproducing formula and the $Tb$ theorem.Rev. Mat. Iberoam. 10 (1994), 51-91. Zbl 0797.42009, MR 1271757, 10.4171/RMI/145
Reference: [9] Han, Y.: Discrete Calderón-type reproducing formula.Acta Math. Sin., Engl. Ser. 16 (2000), 277-294. Zbl 0978.42010, MR 1778708, 10.1007/s101140050021
Reference: [10] Han, Y., Sawyer, E. T.: Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces.Mem. Am. Math. Soc. 110 (1994), no. 530, 126 pages. Zbl 0806.42013, MR 1214968, 10.1090/memo/0530
Reference: [11] Macías, R. A., Segovia, C.: Lipschitz functions on spaces of homogeneous type.Adv. Math. 33 (1979), 257-270. Zbl 0431.46018, MR 0546295, 10.1016/0001-8708(79)90012-4
Reference: [12] Meyer, Y., Coifman, R.: Wavelets: Calderón-Zygmund and Multilinear Operators.Cambridge Studies in Advanced Mathematics 48, Cambridge University Press, Cambridge (1997). Zbl 0916.42023, MR 1456993
Reference: [13] Sawyer, E., Wheeden, R. L.: Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces.Am. J. Math. 114 (1992), 813-874. Zbl 0783.42011, MR 1175693, 10.2307/2374799


Files Size Format View
CzechMathJ_67-2017-1_16.pdf 335.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo