[3] Bacciotti, A., Mazzi, L.: 
Asymptotic controllability by means of eventually periodic switching rules. SIAM J. Control Optim. 49 (2011), 476-497. 
DOI 10.1137/100798260 | 
MR 2784697 
[6] Conti, R.: 
Asymptotic control. In: Control Theory and Topics in Functional Analysis, International Atomic Energy Agency, Vienna 1976, pp. 329-360. 
MR 0529108 
[7] Conti, R.: 
Linear Differential Equations and Control. Academic Press, London 1976. 
MR 0513642 
[8] Lin, H., Antsaklis, P. J.: 
Stability and stabilization of switched linear systems: a survey of recent results. IEEE Trans. Automat. Control 54 (2009), 308-322. 
DOI 10.1109/tac.2008.2012009 | 
MR 2491959 
[9] Huang, Z., Xiang, C., Lin, H., Lee, T.: 
Necessary and sufficient conditions for regional stabilisability of generic switched linear systems with a pair of planar subsystems. Int. J. Control 83 (2010), 694-715. 
DOI 10.1080/00207170903384321 | 
MR 2666164 
[13] Sontag, E. D.: 
Smooth stabilization implies coprime factorization. IEEE Trans. Automat. Control 34 (1989), 435-443. 
DOI 10.1109/9.28018 | 
MR 0987806 
[17] Feng, Wei, Zhang, JiFeng: 
Input-to-state stability of switched nonlinear systems. Science in China Series F: Information Sciences 51 (2008), 1992-2004. 
DOI 10.1007/s11432-008-0161-7 | 
MR 2460755 
[18] Wicks, M., Peleties, P., DeCarlo, R. A.: 
Switched controller synthesis for the quadratic stabilization of a pair of unstable linear systems. Europ. J. Control 4 (1998), 140-147. 
DOI 10.1016/s0947-3580(98)70108-6 
[19] Willems, J. L.: Stability Theory of Dynamical Systems. Nelson, London 1970.
[21] Yang, G., Liberzon, D.: 
Input-to-state stability for switched systems with unstable subsystems: A hybrid Lyapunov construction. In: Proc. IEEE Conference on Decision and Control 2014 (2015), pp. 6240-6245. 
DOI 10.1109/cdc.2014.7040367 
[22] Yoshizawa, T.: 
Stability Theory by Liapunov's Second Method. Publications of the Mathematical Society of Japan No. 9, 1966. 
MR 0208086 
[23] Wang, Yue-E, Sun, Xi-Ming, Shi, Peng, Zhao, Jun: 
Input-to-State stability of switched nonlinear systems with time delays under asynchronous switching. IEEE Trans. Cybernetics 43 (2013), 2261-2265. 
DOI 10.1109/tcyb.2013.2240679 
[24] Wang, Yue-E, Sun, Xi-Ming, Wang, Wei, Zhao, Jun: 
Stability properties of switched nonlinear delay systems with synchronous or asynchronous switching. Asian J. Control 17 (2015), 1187-1195. 
DOI 10.1002/asjc.964 | 
MR 3373079