Previous |  Up |  Next

Article

Keywords:
distribution; sphere; Fourier-Laplace series; Abel summability
Summary:
Given a distribution $T$ on the sphere we define, in analogy to the work of Łojasiewicz, the value of $T$ at a point $\xi $ of the sphere and we show that if $T$ has the value $\tau $ at $\xi $, then the Fourier-Laplace series of $T$ at $\xi $ is Abel-summable to $\tau $.
References:
[1] Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory. Graduate Texts in Mathematics 137, Springer, New York (2001). DOI 10.1007/b97238 | MR 1805196 | Zbl 0959.31001
[2] Estrada, R., Kanwal, R. P.: Distributional boundary values of harmonic and analytic functions. J. Math. Anal. Appl. 89 (1982), 262-289. DOI 10.1016/0022-247X(82)90102-0 | MR 0672200 | Zbl 0511.31008
[3] Vieli, F. J. González: Fourier inversion of distributions on the sphere. J. Korean Math. Soc. 41 (2004), 755-772. DOI 10.4134/JKMS.2004.41.4.755 | MR 2068151 | Zbl 1066.46031
[4] Groemer, H.: Geometric Applications of Fourier Series and Spherical Harmonics. Encyclopedia of Mathematics and Its Applications 61, Cambridge University Press, Cambridge (1996). DOI 10.1017/CBO9780511530005 | MR 1412143 | Zbl 0877.52002
[5] Kostadinova, S., Vindas, J.: Multiresolution expansions of distributions: pointwise convergence and quasiasymptotic behavior. Acta Appl. Math. 138 (2015), 115-134. DOI 10.1007/s10440-014-9959-z | MR 3365583 | Zbl 1322.42045
[6] Łojasiewicz, S.: Sur la fixation des variables dans une distribution. Stud. Math. 17 (1958), 1-64 French. DOI 10.4064/sm-17-1-1-64 | MR 0107167 | Zbl 0086.09501
[7] Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series 32, Princeton University Press, Princeton (1971). DOI 10.1515/9781400883899 | MR 0304972 | Zbl 0232.42007
[8] Vindas, J., Estrada, R.: Distributional point values and convergence of Fourier series and integrals. J. Fourier Anal. Appl. 13 (2007), 551-576. DOI 10.1007/s00041-006-6015-z | MR 2355012 | Zbl 1138.46030
[9] Walter, G.: Pointwise convergence of distribution expansions. Stud. Math. 26 (1966), 143-154. DOI 10.4064/sm-26-2-143-154 | MR 0190624 | Zbl 0144.37401
[10] Walter, G. G., Shen, X.: Wavelets and Other Orthogonal Systems. Studies in Advanced Mathematics, Chapman & Hall/CRC, Boca Raton (2001). MR 1887929 | Zbl 1005.42018
Partner of
EuDML logo