Previous |  Up |  Next

Article

Title: On continuous self-maps and homeomorphisms of the Golomb space (English)
Author: Banakh, Taras
Author: Mioduszewski, Jerzy
Author: Turek, Sławomir
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 59
Issue: 4
Year: 2018
Pages: 423-442
Summary lang: English
.
Category: math
.
Summary: The Golomb space ${\mathbb N}_\tau$ is the set ${\mathbb N}$ of positive integers endowed with the topology $\tau$ generated by the base consisting of arithmetic progressions $\{a+ bn: n\ge 0\}$ with coprime $a,b$. We prove that the Golomb space ${\mathbb N}_\tau$ has continuum many continuous self-maps, contains a countable disjoint family of infinite closed connected subsets, the set $\Pi$ of prime numbers is a dense metrizable subspace of ${\mathbb N}_\tau$, and each homeomorphism $h$ of ${\mathbb N}_\tau$ has the following properties: $h(1)=1$, $h(\Pi)=\Pi$, $\Pi_{h(x)}=h(\Pi_x)$, and $h(x^{{\mathbb N}})=h(x)^{\,\mathbb N}$ for all $x\in{\mathbb N}$. Here $x^{\mathbb N}:=\{x^n\colon n\in{\mathbb N}\}$ and $\Pi_x$ denotes the set of prime divisors of $x$. (English)
Keyword: Golomb space
Keyword: arithmetic progression
Keyword: superconnected space
Keyword: homeomorphism
MSC: 11A41
MSC: 54D05
idZBL: Zbl 06997360
idMR: MR3914710
DOI: 10.14712/1213-7243.2015.269
.
Date available: 2018-12-28T15:06:27Z
Last updated: 2021-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147548
.
Reference: [1] Apostol T. M.: Introduction to Analytic Number Theory.Undergraduate Texts in Mathematics, Springer, New York, 1976. MR 0434929
Reference: [2] Artin E., Tate J.: Class Field Theory.Advanced Book Classics, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, 1990. MR 1043169
Reference: [3] Banakh T.: Is the Golomb countable connected space topologically rigid?.available at https://mathoverflow.net/questions/285557.
Reference: [4] Banakh T.: A simultaneous generalization of the Grunwald-Wang and Dirichlet theorems on primes.available at https://mathoverflow.net/questions/310130.
Reference: [5] Banakh T.: Is the identity function a unique multiplicative homeomorphism of $ \mathbb N$?.available at https://mathoverflow.net/questions/310163.
Reference: [6] Brown M.: A countable connected Hausdorff space.Bull. Amer. Math. Soc. 59 (1953), Abstract 423, 367.
Reference: [7] Clark P. L., Lebowitz-Lockard N., Pollack P.: A note on Golomb topologies.Quaest. Math. published online, available at https://doi.org/10.2989/16073606.2018.1438533. 10.2989/16073606.2018.1438533
Reference: [8] Dirichlet P. G. L.: Lectures on Number Theory.History of Mathematics, 16, American Mathematical Society, Providence, London, 1999. MR 1710911, 10.1090/hmath/016
Reference: [9] Engelking R.: General Topology.Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [10] Engelking R.: Theory of Dimensions Finite and Infinite.Sigma Series in Pure Mathematics, 10, Heldermann Verlag, Lemgo, 1995. Zbl 0872.54002, MR 1363947
Reference: [11] Furstenberg H.: On the infinitude of primes.Amer. Math. Monthly 62 (1955), 353. MR 0068566, 10.2307/2307043
Reference: [12] Gauss C. F.: Disquisitiones Arithmeticae.Springer, New York, 1986. Zbl 1167.11001
Reference: [13] Golomb S. W.: A connected topology for the integers.Amer. Math. Monthly 66 (1959), 663–665. MR 0107622, 10.1080/00029890.1959.11989385
Reference: [14] Golomb S. W.: Arithmetica topologica.General Topology and Its Relations to Modern Analysis and Algebra, Proc. Symp., Prague, 1961, Academic Press, New York; Publ. House Czech. Acad. Sci., Praha (1962), 179–186. MR 0154249
Reference: [15] Jones G. A., Jones J. M.: Elementary Number Theory.Springer Undergraduate Mathematics Series, Springer, London, 1998. MR 1610533
Reference: [16] Knaster B., Kuratowski K.: Sur les ensembles connexes.Fund. Math. 2 (1921), no. 1, 206–256 (French). 10.4064/fm-2-1-206-255
Reference: [17] Knopfmacher J., Porubský Š.: Topologies related to arithmetical properties of integral domains.Exposition Math. 15 (1997), no. 2, 131–148. MR 1458761
Reference: [18] Steen L. A., Seebach J. A., Jr.: Counterexamples in Topology.Dover Publications, Mineola, 1995. Zbl 0386.54001, MR 1382863
Reference: [19] Stevenhagen P., Lenstra H. W., Jr.: Chebotarëv and his density theorem.Math. Intelligencer 18 (1996), no. 2, 26–37. MR 1395088, 10.1007/BF03027290
Reference: [20] Sury B.: Frobenius and his density theorem for primes.Resonance 8 (2003), no. 12, 33–41. 10.1007/BF02839049
Reference: [21] Szczuka P.: The connectedness of arithmetic progressions in Furstenberg's, Golomb's, and Kirch's topologies.Demonstratio Math. 43 (2010), no. 4, 899–909. MR 2761648
Reference: [22] Szczuka P.: The Darboux property for polynomials in Golomb's and Kirch's topologies.Demonstratio Math. 46 (2013), no. 2, 429–435. MR 3098036
Reference: [23] Wang S.: A counter-example to Grunwald's theorem.Ann. of Math. (2) 49 (1948), 1008–1009. MR 0026992, 10.2307/1969410
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_59-2018-4_3.pdf 371.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo