[1] Blair, D.E.: 
Contact metric manifolds in Riemannian geometry. 1976, Springer-Verlag, Berlin-New-York, Lecture Notes in Mathematics 509.  
DOI 10.1007/BFb0079308 | 
MR 0467588[4] De, U.C., Gazi, A.K.: 
On $\phi $-recurrent $N(k)$-contact metric manifolds. Math. J. Okayama Univ., 50, 2008, 101-112,  
MR 2376549[5] De, U.C., Shaikh, A.A., Biswas, S.: 
On $\phi $-recurrent Sasakian manifolds. Novi Sad J. Math., 33, 2003, 13-48,  
MR 2046161[6] Nagaraja, H.G., Somashekhara, G.: 
$\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds. Mathematica Aeterna, 2, 6, 2012, 523-532,  
MR 2969174[7] Papantonion, B.J.: 
Contact Riemannian manifolds satisfying $R(\xi ,X)\cdot R=0$ and $\xi \in (k,\mu )$-nullity distribution. Yokohama Math. J., 40, 2, 1993, 149-161,  
MR 1216349[8] Premalatha, C.R., Nagaraja, H.G.: 
On Generalized $(k,\mu )$-space forms. Journal of Tensor Society, 7, 2013, 29-38,  
MR 3676345[9] Shaikh, A.A., Baishya, K.K.: 
On $(k,\mu )$-contact metric manifolds. Differential Geometry - Dynamical Systems, 8, 2006, 253-261,  
MR 2220732[10] Sharma, R., Blair, D.E.: 
Conformal motion of contact manifolds with characteristic vector field in the $k$-nullity distribution. Illinois J. Math., 42, 1998, 673-677,  
DOI 10.1215/ijm/1255985467 | 
MR 1649889[13] Tripathi, M.M., Gupta, P.: 
$\tau $-curvature tensor on a semi-Riemannian manifold. J. Adv. Math. Stud., 4, 1, 2011, 117-129,  
MR 2808047[14] Tripathi, M.M., Gupta, P.: 
On $\tau $-curvature tensor in K-contact and Sasakian manifolds. International Electronic Journal of Geometry, 4, 2011, 32-47,  
MR 2801462[15] Tripathi, M.M., Gupta, P.: 
$(N(k),\xi )$-semi-Riemannian manifolds: Semisymmetries. arXiv:1202.6138v[math.DG], 28, 2012,  
MR 2915487