| Title: | A Study on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds (English) | 
| Author: | Ingalahalli, Gurupadavva | 
| Author: | Bagewadi, C.S. | 
| Language: | English | 
| Journal: | Communications in Mathematics | 
| ISSN: | 1804-1388 | 
| Volume: | 26 | 
| Issue: | 2 | 
| Year: | 2018 | 
| Pages: | 127-136 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | In this paper we study $\phi $-recurrence $\tau $-curvature tensor in\\ $(k,\mu )$-contact metric manifolds. (English) | 
| Keyword: | Contact metric manifold | 
| Keyword: | curvature tensor | 
| Keyword: | Ricci tensor | 
| Keyword: | Ricci operator. | 
| MSC: | 53C15 | 
| MSC: | 53C25 | 
| MSC: | 53D15 | 
| idZBL: | Zbl 07058956 | 
| idMR: | MR3898194 | 
| . | 
| Date available: | 2019-05-07T09:23:54Z | 
| Last updated: | 2020-01-05 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/147651 | 
| . | 
| Reference: | [1] Blair, D.E.: Contact metric manifolds in Riemannian geometry.1976, Springer-Verlag, Berlin-New-York, Lecture Notes in Mathematics 509.  MR 0467588, 10.1007/BFb0079308 | 
| Reference: | [2] Blair, D.E., Koufogiorgos, T., Papantoniou, B.J.: Contact metric manifolds satisfying a nullity condition.Israel J. Math., 91, 1995, 189-214,  Zbl 0837.53038, MR 1348312, 10.1007/BF02761646 | 
| Reference: | [3] Boeckx, E., Buecken, P., Vanhecke, L.: $\phi $-symmetric contact metric spaces.Glasgow Math. J., 41, 1999, 409-416,  MR 1720426, 10.1017/S0017089599000579 | 
| Reference: | [4] De, U.C., Gazi, A.K.: On $\phi $-recurrent $N(k)$-contact metric manifolds.Math. J. Okayama Univ., 50, 2008, 101-112,  MR 2376549 | 
| Reference: | [5] De, U.C., Shaikh, A.A., Biswas, S.: On $\phi $-recurrent Sasakian manifolds.Novi Sad J. Math., 33, 2003, 13-48,  MR 2046161 | 
| Reference: | [6] Nagaraja, H.G., Somashekhara, G.: $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds.Mathematica Aeterna, 2, 6, 2012, 523-532,  MR 2969174 | 
| Reference: | [7] Papantonion, B.J.: Contact Riemannian manifolds satisfying $R(\xi ,X)\cdot R=0$ and $\xi \in (k,\mu )$-nullity distribution.Yokohama Math. J., 40, 2, 1993, 149-161,  MR 1216349 | 
| Reference: | [8] Premalatha, C.R., Nagaraja, H.G.: On Generalized $(k,\mu )$-space forms.Journal of Tensor Society, 7, 2013, 29-38,  MR 3676345 | 
| Reference: | [9] Shaikh, A.A., Baishya, K.K.: On $(k,\mu )$-contact metric manifolds.Differential Geometry - Dynamical Systems, 8, 2006, 253-261,  MR 2220732 | 
| Reference: | [10] Sharma, R., Blair, D.E.: Conformal motion of contact manifolds with characteristic vector field in the $k$-nullity distribution.Illinois J. Math., 42, 1998, 673-677,  MR 1649889, 10.1215/ijm/1255985467 | 
| Reference: | [11] Tanno, S.: Ricci curvatures of contact Riemannian manifolds.Tohoku Math. J., 40, 1988, 441-448,  Zbl 0655.53035, MR 0957055, 10.2748/tmj/1178227985 | 
| Reference: | [12] Takahashi, T.: Sasakian $\phi $-symmetric spaces.Tohoku Math. J., 29, 1977, 91-113,  MR 0440472, 10.2748/tmj/1178240699 | 
| Reference: | [13] Tripathi, M.M., Gupta, P.: $\tau $-curvature tensor on a semi-Riemannian manifold.J. Adv. Math. Stud., 4, 1, 2011, 117-129,  MR 2808047 | 
| Reference: | [14] Tripathi, M.M., Gupta, P.: On $\tau $-curvature tensor in K-contact and Sasakian manifolds.International Electronic Journal of Geometry, 4, 2011, 32-47,  MR 2801462 | 
| Reference: | [15] Tripathi, M.M., Gupta, P.: $(N(k),\xi )$-semi-Riemannian manifolds: Semisymmetries.arXiv:1202.6138v[math.DG], 28, 2012,  MR 2915487 | 
| . |