[1] Bose, R. C., Shrikhande, S. S.: 
On the falsity of Euler’s conjecture about the non-existence of two orthogonal Latin squares of order 4t + 2.  Proc. Natl. Acad. Sci. USA 45, 5 (1959), 734–737. 
DOI 10.1073/pnas.45.5.734 | 
MR 0104590[2] Bose, R. C., Shrikhande, S. S., Parker, E. T.: 
Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler’s conjecture.  Canad. J. Math. 12 (1960), 189–203. 
DOI 10.4153/CJM-1960-016-5 | 
MR 0122729[4] Colbourn, C. J., Dinitz, J. H.: 
Handbook of combinatorial designs (Discrete mathematics and its applications).  Chapman and Hall/CRC, 2006. 
MR 2246267[5] Fellmann, E. A.: 
Leonhard Euler.  Springer, Basel, 2006. 
MR 2285279[6] Graham, R.: Combinatorics: ancient & modern.  OUP, Oxford, 2013.
[7] Katrnoška, F.: Latinské čtverce a genetický kód.  Pokroky Mat. Fyz. Astronom. 52 (2007), 177–187.
[8] Katrnoška, F., Křížek, M., Somer, L.: Magické čtverce a sudoku.  Pokroky Mat. Fyz. Astronom. 53 (2008), 113–124.
[10] Matoušek, J., Nešetřil, J.: 
Invitation to discrete mathematics.  OUP, Oxford, 2008. 
MR 2469243[11] Matoušek, J., Nešetřil, J.: Kapitoly z diskrétní matematiky.  Karolinum, 2010.
[12] Otava, M.: Základní principy navrhování experimentů.  Pokroky Mat. Fyz. Astronom. 63 (2018), 196–211.
[13] Packel, E.: The mathematics of games and gambling.  The Mathematical Association of America, 1996.
[14] Paige, L. J., Wexler, C.: 
A canonical form for incidence matrices of finite projective planes and their associated latin squares.  Port. Math. 12 (1953), 105–112. 
MR 0060448[17] Van Lint, J. H., Wilson, R. M.: 
A course in combinatorics.  Cambridge University Press, 2009. 
MR 1871828