[1] Alsedà, L., Llibre, J., Misiurewicz, M.: 
Combinatorial dynamics and entropy in dimension one.  2nd ed., World Scientific, Singapore, 2000. 
MR 1255515[2] Andres, J.: Šarkovského věta a diferenciální rovnice.  Pokroky Mat. Fyz. Astronom. 49 (2004), 151–159.
[3] Andres, J.: Šarkovského věta a diferenciální rovnice, II.  Pokroky Mat. Fyz. Astronom. 56 (2011), 143–149.
[4] Andres, J.: 
On the coexistence of irreducible orbits of coincidences for multivalued admissible maps on the circle via Nielsen theory.  Topology Appl. 221 (2017), 596–609. 
DOI 10.1016/j.topol.2017.02.071 | 
MR 3624487[6] Andres, J.: 
Randomized Sharkovsky-type theorems and their application to random impulsive differential equations and inclusions on tori.  Stoch. Dyn. 19 (2019), 1–30. 
DOI 10.1142/S0219493719500369 | 
MR 3994160[7] Andres, J.: 
Coexistence of periodic solutions with various periods of impulsive differential equations and inclusions on tori via Poincaré operators.  Topology Appl. 255 (2019), 126–140. 
DOI 10.1016/j.topol.2019.01.008 | 
MR 3905238[10] Andres, J., Górniewicz, L.: 
Topological fixed point principles for boundary value problems.  Kluwer, Dordrecht, 2003. 
MR 1998968[11] Andres, J., Pastor, K.: 
Block–Sharkovsky type theorem on the circle applicable to differential equations and inclusions.  Internat. J. Bifur. Chaos 28 (4) (2018), 1850056, 1–11. 
DOI 10.1142/S0218127418500566 | 
MR 3798212[12] Andres, J., Pastor, K.: 
A multivalued version of the Block–Sharkovsky theorem applicable to differential equations on the circle.  Internat. J. Bifur. Chaos 28 (11) (2018), 1–15. 
MR 3868918[13] Andres, J., Pastor, K.: 
Sharp Block–Sharkovsky type theorem for multivalued maps on the circle and its application to differential equations and inclusions.  Internat. J. Bifur. Chaos (2019), v tisku. 
MR 3997004[14] Andres, J., Pastor, K., Šnyrychová, P.: 
A multivalued version of Sharkovskii’s theorem holds with at most two exceptions.  J. Fixed Point Theory Appl. 2 (2007), 153–170. 
DOI 10.1007/s11784-007-0029-2 | 
MR 2336505[17] Block, L., Guckenheimer, J., Misiurewicz, M., Young, L.-S.: 
Periodic points and topological entropy of one-dimensional maps.  In: Nitecki, Z., Robinson, C. (eds.): Global Theory of Dynamical Systems, Lect. Notes in Math. 819, Springer, Berlin, 1980, 18–34. 
MR 0591173[18] Brown, R. F., Furi, M., Górniewicz, L., Jiang, B.: 
Handbook of topological fixed point theory.  Springer, Berlin, 2005. 
MR 2170491[19] Coddington, E. A., Levinson, N.: 
Theory of differential equations.  McGraw-Hill, New York, 1955. 
MR 0069338[20] Denjoy, A.: Sur les courbes définies par les équations différentielles à la surface du tore.  J. Math. Pures Appl. 11 (1932), 333–376.
[21] Efremova, L. S.: Periodičeskije orbity i stěpeň nepreryvnogo otobraženija okružnosti.  Dif. Integr. Urav. (Gor’kii) 2 (1978), 109–115.
[22] Farkas, M.: 
Periodic motions.  Springer, Berlin, 1994. 
MR 1299528[23] Hasselblatt, B., Katok, A.: 
A first course in dynamics: with a panorama of recent developments.  Cambridge Univ. Press, Cambridge, 2003. 
MR 1995704[24] van Kampen, E. R.: 
The topological transformations of a simple closed curve into itself.  Amer. J. Math. 57 (1935), 142–152. 
DOI 10.2307/2372026 | 
MR 1507062[25] Katok, A., Hasselblatt, B.: 
Introduction to the modern theory of dynamical systems.  Cambridge Univ. Press, Cambridge, 1995. 
MR 1326374[27] Poincaré, H.: Sur les courbes définies par les équations différentielles (iii).  J. Math. Pures Appl. 1 (1885), 167–244.
[28] Siegberg, H. W.: 
Chaotic mappings on ${S}^1$, periods one, two, three imply chaos on ${S}^1$.  In: Proc. Conf. Numerical solutions of nonlinear equations (Bremen, 1980), Lect. Notes in Math. 878, Springer, Berlin, 1981, 351–370. 
MR 0644337[29] Šarkovskij, A. N.: Sosuščestvovanije ciklov nepreryvnogo otobraženija prjamoj v sebja.  Ukrain. Matem. Žurn. 1 (1964), 61–71.
[30] Zhao, X.: 
Periodic orbits with least period three on the circle.  Fixed Point Theory Appl. (Article ID 194875) (2008), 1–8. 
MR 2377542